Effect of Microstructural Damage on the Thermomechanical Properties of Composite Electrodes in Proton Exchange Membrane Fuel Cells

> Cong Feng Tongji University Shanghai China

CONTENTS

Background

- Methods
- Results and discussion
- Conclusion

Proton exchange membrane fuel cells (PEMFC)

Damage Failure Affects PEMFC Durability

Electrode component: most likely to suffer damage

Electrode reactive site

Damaged electrode

Thermomechanical Degradation

> Damage due to mechanical and thermal actions

Start-up and shutdown condition

Hydrothermal loading cycles

Multiscale Simulation

Microstructural changes and macroscopic properties

CONTENTS

- Background
- Methods
- Results and discussion
- Conclusion

Research Methods and Framework

Representative Volume Element (RVE)

Characteristic	Matrix	Pt/C	Pore
Size (nm)	100	20-50	20-100
Volume fraction	30-55	15-40	30-40

➤ Interface interaction

• Friction

$$\tau = \mu P + P_0$$

• Delamination

$$T = K\delta(1 - D_m)$$

> Interface delamination model: mixed cohesive zone model

Interface adhesive force (AFM Experiment)

➤ Interface adhesive force (MD simulation)

> Interfacial thermal conductivity

$$Q = \frac{\kappa A t \Delta T}{x} \qquad \qquad J = -\kappa \frac{dT}{dx}$$

CONTENTS

- Background
- Methods
- Results and discussion
- Conclusion

Interface type & mechanical parameters

> Interfacial thermal conductivity

ε_y/%

1.018

1.014

1.021

0.934

Electrode's mechanical property

Interfacial strength \bigcirc Elastic modulus

σ_y/MPa

1.40

1.41

1.44

1.53

18	

ν

0.291

0.290

0.284

0.262

Delamination evolution **Sudden** stop in stress

Electrode's mechanical properties

Electrode's thermal conductivity

Type IV

Type II

Type II & 1% strain

Type I

Interface	ITC (W·m ⁻¹ ·K ⁻¹)	Strain	Porosity (%)	kc(W·m ⁻¹ ·K ⁻¹)
Type IV	0	0	28	0.1121
Type II	MD results	0	28	0.0735
Type II	MD results	0.1	30	0.0632
Туре І	MD results	0.085	31	0.0541

MD results

Temperature (°C)	ITC (W·m ⁻¹ ·k ⁻¹)
25	0.0054
45	0.0056
65	0.0057
80	0.0064

Electrode's thermal conductivity

• Effective medium theory

$$\sum_{i=1}^{s} f_i \frac{k_c - k_i}{k_i + (z/2 - 1)k_c} = 0$$

- *f_i* volume fraction (*i*th phase) *k_i* thermal conductivity (*i*th phase)
- *k_c* thermal conductivity (composite)

Comparison

Interface	Porosity (%)	kc(W·m ⁻¹ ·K ⁻¹) (Present)	$k_c(\mathbf{W} \cdot \mathbf{m}^{-1} \cdot \mathbf{K}^{-1})$ (EMT)
Type II	28	0.0735	0.093
Type II	30	0.0632	0.085
Type I	31	0.0541	0.081

CONTENTS

- Background
- Methods
- Results and discussion
- Conclusion

Thermomechanical Properties of Damaged Electrode

Zheng J, Feng C^{*} et al., ACS Appl. Mater. Interfaces, 2022, 14, 2918

ACKNOWLEDGEMENT

• Postgraduates

Jin Zheng, Kunnan Qu

• Cooperation Team

Clean Energy Automotive Engineering Center

• Financial support

Natural Science Foundation of Shanghai

Thank You For Your Attention!