

Engineering and Physical Sciences Research Council

Incremental Forming of Composites: A Mould Free Future

Patrick Fairclough p.fairclough@sheffield.ac.uk

Victor M. Cedeno-Campos Pablo A. Jaramillo Christine M. Fernyhough Yunlong Tang Jack Leach Billy Fidel Gareth Baker David Webster

Why ?: Challenges of composites production

Large autoclave oven for aircraft structures

Composites.media, "Pressing ahead with the oven", [online], 1998 - 2019 © MIT Publishing, visited on 03/September/2019 at 13:33pm, URL: https://www.composites.media/pressing-ahead-oven/

- Large parts require large molds
- Require long curing time in autoclaves:
 - Dependent on thickest section.
- Mold size is limited by autoclave size
- Molds wear over time:
 - Depends on complexity

MARKET SEGMENT

f 3

HOME ABOUT

COLUMNS MAG

Premier Composite Technologies is working on the World' Largest Sliding Dome in Mecca

For small production runs a mould could be 80-90% of the cost

Composites Manufacturing

MORE PRODUCTS EXP

HOME

E ABOUT MARKET SEGMENTS

S COLUMNS MAGAZIN

New Apple Campus Features World's Largest Freestanding Carbon Fiber Roof

Transporting Turbine blades

• One of 198 x V117 blades being transported from Ashaig Airfield to Stronelairg wind farm in Scotland. Its only 57.5 m long.

 Vestas YouTube channel: https://www.youtube.com/watch?v=iTpZ5V4HrK4

Long term vision: (Or delusion)

- Can we create a **scalable** technology for composite parts.
- Can we minimise curing energy input.
 - Tailor it to the part geometry (thickness)
 - Chemical Kinetics of curing \rightarrow exotherms in thick sections
- 3D weave a part and cure it at the locality.
 - Transport high density materials
 - Fibres, fabric and liquid resin not large cured hollow parts

What is Incremental forming?

3D weaving, handling and curing

1. R. Kuitert, J. Sinke, TUDelft MSc Thesis http://resolver.tudelft.nl/uuid:ea8c5ea7-d7ad-471f-a300-69e3dc5fa6d3

2. K.P. Jackson, J.M. Allwood, M. Landert, Incremental forming of sandwich panels, https://doi.org/10.1016/j.jmatprotec.2007.11.117.

Thermosets and Thermoplastic

Thermoset

- Carbon-Epoxy Twill
- Pre-preg: Carbon fibre coated with epoxy
- Cure at 130 °C
- Fibres are good conductors of heat

Thermoplastic

- Woven Polypropylene tape (2mm)
- Melt at 160 °C
- Poor conductor of heat
- Heat stays localised

Single Point Incremental forming: With Mould

Cold Mould:

- Very slow process.
- Heat Conduction limits
 - Thickness
 - Speed

Hot mould:

- Faster (but still slow).
- Impingement contact increases heat transfer but still slow.
- Suitable for thermoplastics due to mould providing heat to bring part close to melting point.
- Unsuitable for prepreg thermosets as hot base cures the material

T₁

Hot Mould

Double Point Incremental* forming: Mould Free

- Double point allows you to create parts direct from software.
 - BUT:
 - It is too slow if using thermal contact to cure¹
- Solutions:
 - Thermoplastics: Ultrasonic welding
 - Thermosets: Electrical cure.

* Some authors use the term Twin Point Incremental forming (TPIF)

1. Victor M. Cedeno-Campos, Pablo A. Jaramillo, Christine M. Fernyhough, J. Patrick A. Fairclough, <u>https://doi.org/10.1016/j.procir.2019.09.020</u>.

Cure Monitoring: In situ Rheometry

• Small oscitation superimposed on lateral motion.

- When resin is uncured: \rightarrow "tacky"
- As the resin cures → gel point → highly dissipative → very sticky
- Cured resin \rightarrow hard \rightarrow no longer sticky.
 - Optimisation of process speed.

Simultaneous Validation of cure

Consolidation: Thermosets and Thermoplastic

A: Autoclave H: Hot press

O: DPIF system (ICULPH)

	Autoclave	Hot press	DPIF system
Layers	StdDev	StdDev	StdDev
2	0.02	0.06	0.03
4	0.06	0.01	0.03
6	0.02	0.04	0.07
8	0.04	0.11	0.09

https://doi.org/10.1016/j.procir.2019.09.020

Bending: Thermosets and Thermoplastic

Material: 3K 200gsm LTC150-C(t)200 UCFE twill prepregs, novolac from SHD.

Comparable to hot press results in thin sections.

https://doi.org/10.1016/j.procir.2019.09.020

Heat Conduction in Carbon Fibre

- Thermal conduction between layers is poor
- Need to get heat into thicker samples
- Microwaves:
 - Carbon conducts \rightarrow Faraday cage \rightarrow poor penetration.
- Induction:
 - See above: Better penetration with low frequency
- RF Heating:
 - Control of localisation
- Ultrasonic:
 - Probes are large, control and safety are issues

Electrical Resistance heating

Conduction in Carbon Fibre

- Carbon fibre conducts.
 - Electric cure has been widely used in Sheffield (Simon Hayes).
 - Mainly along the fibres.
- Advantages
 - High localised power.
 - Highly controllable.
 - Low cost equipment.
 - Low input energy → Reduce cost and carbon footprint.
 - No radiation shielding required.

BUT Epoxy resin does not conduct....

Option 1: Epoxy + 2wt.% Carbon Black

- DC Resistivity drops dramatically as the epoxy is cured.
- This is probably driven by reaction induced phase separation (RIPS)

Tang, Cepero Mejías, Fairclough, submitted May 2023

Conduction through Carbon Fibre

- Option 1:
 - Add Carbon Black to the resin
 - Create a pre-preg
 - Cure via electrical conduction through the panel.

- Option 2:
 - Compress a standard pre-preg until the resistance falls

Tang, Cepero Mejías, Fairclough, submitted June 2023

First results: Carbon Black + Carbon Fibre

- July 2023
- Electric curing of thick panel via DPIF.
- 20mm tool
- 15 layers
 - 30W for 60s per point (1.8 kJ)
 - Cure control required
 - 145 x 100 mm in 80 mins. (139 kJ)
 - Consolidation needs to be improved to compete.

Start

Conclusions and future work

- A novel process to cure prepreg composites without moulds is under development.
- For simple parts the process could be cheaper, faster and it has a lower carbon footprint that an autoclave
- Future work
 - Focus on testing with the dual point machine configuration
 - 6 axis machine: Cooperative Robots
 - SNAP cure and fast cure systems.
 - Importance of the cure chemistry to improve collateral curing.
 - Investigate the effect of other carbons on the curing process
 - Graphene and CNT: practical cost limitations?
 - Speed up the curing process:
 - integrating the rheometry and resistivity with the power control.
 - Larger tooling for larger parts.