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BEHAVIOR OF HIGH-TEMPERATURE EPOXY RESIN PREPREG 

SYSTEMS
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Trend towards lower CO2 emissions for rail and car traffic
Aviation expected to grow to Pre-Covid level latest 2024

https://www.eea.europa.eu/data-and-maps/indicators/transport-emissions-of%20greenhouse-gases/transport-emissions-of-greenhouse-gases-12


Aviation is fastest-growing Source of Greenhouse Emissions
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• Flying less

• New propulsion systems

• Biobased fuels

• Lightweight design and material

Air traffic threatens to become the
largest CO2 polluter by 2050

Solutions:

Emissions at high altitude have 2-4x times
greater impact than comparable ground emissions
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Development of FRP in Aviation

T. Trzepiencinski, Journal of Composite Science,  2021
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Development of FRP in Aviation – Quo Vadis?
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A310-200
A340-600

A340-300

A320
Fin,Rudder,Flaps

Rear Pressure
Bulkhead

Rear Fuselage, 
Wing Ribs

Outer Wing
Fuselage ?

Further increase through
replacement of

aluminium, titanium alloys by

high-temperature resistant
polymer composites

for

• Engine fairings
• Air ducts
• Guide vanes
• etc.

A350
XWB

A400M

A380

T. Trzepiencinski, Journal of Composite Science,  2021



High-Temperature Resin Systems
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Standard 
Epoxy

Long-term
Operating

Temperature

140-180 °C

200-230 °C

BMI 

Max Tg: 230-380 °C
Price: >150€/kg
Toxicity by inhalation
High melting point

Cyanate
Ester 

Max Tg: 250-400 °C
Price: 250-450€/kg
Poor mechanics
Humidity-sensitive

Poly-
imide

Max Tg: 370-400 °C
Price: up to 1000€
Difficult processability

260-300 °C

260-300 °C

Tg: up to 500 °C
Price: 1000€/kg
Difficult processability

Phthalo
nitrile

300-375 °C

Max Tg: 250 °C
Price: 5-50€/kg
High water-uptake



High-Temperature Resin Systems
MOTIVATION
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Standard 
Epoxy

Long-term
Operating

Temperature

140-180 °C

200-230 °C

BMI 

Max Tg: 230-380 °C
Price: >120€/kg
Toxicity by inhalation
High melting point

Cyanate
Ester 

Max Tg: 250-400 °C
Price: 250-450€/kg
Poor mechanics
Humidity-sensitive

Poly-
imide

Max Tg: 370-400 °C
Price: up to 1000€
Difficult processability

260-300 °C

260-300 °C

Tg: up to 500 °C
Price: 1000€/kg
Difficult processability

Phthalo
nitrile

300-375 °C

Max Tg: 250 °C
Price: 5-50€/kg
High water-uptake

?
Epoxy-based?
Tg > 280 °C?



Motivation for the Research
MOTIVATION
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Resin Additives
(Toughener, Flame Retardant)

High-Tg
Epoxy Resin System

Reliable
Lifetime

Prediction

Long-term 
thermo-
oxidative 

Aging

Glass Fiber-Reinforced
Composite



High-Tg Epoxy Resin System – Technical Aims
MOTIVATION
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Thermal /
Fire properties

Tg > 300 °C (DMA: tan δ)

Td5 > 370 °C (TGA)

(P)HHR < 65 kW/m2

TSP: < 20 m2

Prepreg/Composite
Neat Resin
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Thermal /
Fire properties

Tg > 300 °C (DMA: tan δ)

Td5 > 370 °C (TGA)

Prepreg/Composite
Neat Resin

(P)HHR < 65 kW/m2

TSP: < 20 m2

𝝈F > 90 MPa 

KIC> 0.8 MPam0.5

Mechanical  
properties

ILSS > 30 MPa

𝝈F > 400 MPa 

Processability

η < 10.000 mPa s at 120 °C

Tstart of curing < 160 °C

Latency
no Tg0 shift > 6 months (RT)

Water  Uptake

< 3 % at 70 °C

< 5 % at 70 °C

Material
Costs

< 70€/kg

<20€/m2



State of the Art
MATERIALS AND METHODS
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10 K/min, N2

HP-7250

4,4´-Diaminodiphenyl sulfone

But still an 
Epoxy Resin!

[1]-[42]: See Master Thesis: Influence of Toughener and Flame Retardant Additives on the Aging Behavior of a High-Tg Epoxy Resin System by Bastian Treiber for literature



Overview of Chosen Material System
I. CHAPTER
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HP-7250
Functionality: 5.0

by DIC Corporation (Japan) 

4,4´-Diaminodiphenyl sulfone
by ACCI Specialty Materials (USA) 

High Tg
Epoxy

resin system

ToughenerFR

Exolit OP935
Particle size D50: 2µm

Content: 10 wt.%
by Clariant AG (Germany)

Sumikaexcel 5003P
Hydroxy-terminated PES powder

Particle size 20 µm
Content: 20 wt.% 

By Sumitomo Chemicals (Japan)



Experimental Design
MATERIALS AND METHODS
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Sample Preparation

Temperature

Thermal Aging
N2 Air

Testing

Outputs:

ThermalDimensional Mechanical Fire related

Time Additives Atmosphere

Factors:

N2



Methods – Design of Experiments (DoE) 
MATERIALS AND METHODS
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Full factorial design
two factors at        225 °C +        air → 2D:

: Experiments

Partial factorial design (Taguchi)
four factors → 4D:
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Properties
RESULTS AND DISCUSSION
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Outputs:

ThermalDimensional Mechanical Fire related



Outputs
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Outputs:

ThermalDimensional Mechanical Fire related

FWHMTg

DMA specimens



Full  Factorial DoE– Thermal Properties: DMA 
RESULTS AND DISCUSSION
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§ Converging trends ~270 °C
§ Significant factor: time
§ No impact on Tg of the PES phase



Outputs
RESULTS AND DISCUSSION
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Outputs:

ThermalDimensional Mechanical Fire related

εflex

σflex Eflex

KIC



Full  Factorial DoE– Mechanical Properties: 3-PBb 
RESULTS AND DISCUSSION
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Full  Factorial DoE– Mechanical Properties: CT 

R. A. Pearson, A. F. Yee, “Toughening mechanisms in thermoplastic-modified epoxies: 1. Modification using poly(phenylene oxide)”, Polymer 1993, 34, 3658–3670

RESULTS AND DISCUSSION
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Outputs
RESULTS AND DISCUSSION
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Outputs:

ThermalDimensional Mechanical Fire related

TSP TGA + FTIR

Mass lost 
CCT

av. 
CO2y

av. 
COy

Char

THR

pHRR



Full  Factorial DoE – Fire Properties: CCT
RESULTS AND DISCUSSION
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§ Strong drop by adding FR and FR/T § Enhanced smoking at 0 h
§ Significant factor: additive and time § No significant factors, large model error

§ Lower 
intumescence



Prepreg Processing

Source (Helvetica, 8pt)

RESULTS AND DISCUSSION
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90 °C 120 °C
RT

Style 7781 Glass-Fabric
satin 8H weave pattern

Weight 295 g/m²



Laminate Manufacturing

Crossply Laminate

CuringProcess
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Curing Cycle:
1h 120 °C/3h 180

Free-Standing Tempering 1h at 250 °C

(0/90)4s

o for shear-loaded parts
o for pipes/ducts

RESULTS AND DISCUSSION

Lay-up on
heating table
(50% FVC)



Laminate Manufacturing

Crossply Laminate Quasi-Isotropric Laminate

CuringProcess
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Curing Cycle:
1h 120 °C/3h 180

Free-Standing Tempering 1h at 250 °C

(0/90)4s [45/90/ -45/0]2s

o for shear-loaded parts
o for pipes/ducts

o Standard lay-up

RESULTS AND DISCUSSION

Lay-up on
heating table
(50% FVC)



Influence of Aging on Interlaminar Shear Stress
RESULTS AND DISCUSSION
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Stronger drop in crossply laminate due to higher thermal stress in 0/90 direction

Crossply Layup   Quasi-Isotropic Layup 



Influence of Aging on Interlaminar Shear Stress
RESULTS AND DISCUSSION

32

Quasi-Isotropic Layup Crossply Layup   

Stronger drop in crossply laminate due to higher thermal stress in 0/90 direction



Influence of Aging on Interlaminar Shear Stress
RESULTS AND DISCUSSION
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Quasi-Isotropic Layup Crossply Layup   Reference



Influence of Aging on Interlaminar Shear Stress
RESULTS AND DISCUSSION
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Quasi-Isotropic Layup Crossply Layup   

Minor cracks visible in nitrogen atmosphere

225 °C 1000h
N2



Influence of Aging on Interlaminar Shear Stress
RESULTS AND DISCUSSION
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Quasi-Isotropic Layup Crossply Layup   

Wider cracks with higher occurence visible in air atmosphere

225 °C 1000h
N2

225 °C 1000h
Air



Influence of Fiber Reinforcement on Aging Behaviour

Based on DMA specimen

RESULTS AND DISCUSSION
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N2 Atmosphere Air Atmosphere



Influence of Fiber Reinforcement on Aging Behaviour

Based on DMA specimen

RESULTS AND DISCUSSION
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N2 Atmosphere Air Atmosphere

Composite shows higher weight loss due to sizing degradation and pathways
Linear degradation in N2, oxidation leads to higher weight loss in air



Summary of Results
SUMMARY
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Influence of toughener and flame-retardant on thermal degradation, mechanical
properties and flame retardant properties

Influence of fiber-reinforcement on aging behavior determined

High-Tg epoxy resin system developed with temperature-stable additives suitable
for prepreg processingI.

II.

III



Next Steps…
OUTLOOK
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Determination of the influence of additives on the isothermal aging behavior
on GFRP and CFRP composite

Life time prediction for neat, additivated resin system and laminate with
Netzsch Kinetics Neo

Determination of the influence of additives on the temperature cyclic aging behavior
on GFRP and CFRP composite



Questions?
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Aging...
You can‘t avoid it.....


