

Budapest University of Technology and Economics (BME)

PSEUDO-DUCTILITY IN LAYER-BY-LAYER HYBRID COMPOSITES THROUGH PRECISE CONTROL OF THE INTERLAYER THICKNESS

Gergely CZÉL (czel@pt.bme.hu) Salvatore Giacomo Marino (marinos@pt.bme.hu) Budapest University of Technology and Economics (BME) Department of Polymer Engineering

ICCM23 – International Conference on Composite Materials, Queen's University Belfast, UK, 30 July-4 August 2023

Introduction

- Composites are stiff, strong and lightweight
- But their failure is usually catastrophic
- Ductility is needed for safety
 - High deformation at break
 - Detectable damage accumulation
 - Warning before failure
 - Residual strength after severe damage

State of the art

- High performance composites: stiff and strong, but failure is sudden and brittle with little warning and poor residual strength
- Pseudo-ductility with an intrinsic safety margin could change design approach and offer major benefits
- Excellent pseudo-ductility demonstrated first with thin-ply UD carbon/glass
 interlayer hybrid laminates in tension
 LSM fragmentation
 - Mechanisms: fragmentation and stable delamination

3/22

State of the art

- High performance composites: stiff and strong, but failure is sudden and brittle with little warning and poor residual strength
- Pseudo-ductility with an intrinsic safety margin could change design approach and offer major benefits
- Excellent pseudo-ductility demonstrated first with UD glass/carbon interlayer hybrid laminates in tension
 - Mechanisms: fragmentation and stable delamination

The concept is then extended to:

- \cdot UD IM/HM carbon hybrids
- QI IM/UHM carbon hybrids
- Visible damage:
 - Overload indicator

(UK patent pending-no. GB2544792B)

Gergely Czél, czel@pt.bme.hu

- To develop pseudo-ductile hybrid composites based on standard thickness plies
- Reduce cost by using cheaper normal CF/EP plies instead of thin-ply prepregs
- Improve performance by increasing the CF/EP to GF/EP ratio in the hybrid

laminates while preserving pseudo-ductility

Concept, design

- Pseudo-ductility was demonstrated with thin, high strain CF/EP plies or normal thickness low strength (high modulus) CF/EP plies
- Increase the mode II fracture toughness by interleaving nanofibrous layers and use normal thickness high strain CF/EP

Materials

Composite plies

Prepregs	Nominal fibre areal density [g/m²]	Fibre volume fraction [-]	Cured ply thickness [µm]	Tensile strain to failure [%]	Tensile modulus [GPa]	Coefficient of thermal expansion [1/K]
AGY Y-110 S-2 glass/913 epoxy	190	0.49	153.8	3.7	45.6	3.20 · 10 ⁻⁶
Hexcel IM7 carbon/913 epoxy	100	0.58	95.8	1.6%	163.2	-0.103 · 10 ⁻⁶

Nanofibrous layers

	Electrospinning solution PA6 concentration: 8wt% (designation: 8PA6)			Electrospinning solution PA6 concentration: 15wt% (designation: 15PA6)		
Targeted areal weight [g/m²]	Measured final areal weight [g/m ²]	Substrate speed [m/min]	Average fibre diameters [nm]	Measured final areal weight [g/m ²]	Substrate speed [m/min]	Average fibre diameters [nm]
2	2.3 (7.7)	0.20	108 (20.4)	2.44 (8.6)	0.80	267 (26.6)
5	5.26 (11.0)	0.12	103 (19.8)	5.68 (11.8)	0.36	243 (27.6)
10	10.92 (12.4)	0.05	121 (18.0)	10.66 (8.8)	0.22	280 (31.4)

Gergely Czél, czel@pt.bme.hu

Materials, manufacturing

UD glass/epoxy prepreg

- Manual lay-up of the composite prepreg plies
- Attaching dry nanofibrous layers to the prepregs
- Autoclave curing of the interleaved hybrid laminates at 125 °C and 7 bar

UD carbon/epoxy prepreg

Tested hybrid laminate configurations

Configurations Lay-up sequence: [G ₃ /NL/C/NL/G ₃]	Fibre areal densities of the constituent plies	Measured thickness <i>h</i>	
layer from a 8% PA6 solution	[g/m ²]	[mm]	
Baseline	[190 ₃ /0/100/0/190 ₃]	1.08 (1.9)	
8PA6-2	[190 ₃ /2/100/2/190 ₃]	1.09 (2.1)	
8PA6-2+RF	$[190_3/2+34/100/2+34/190_3]$	1.14 (2.1)	
8PA6-5	[190 ₃ /5/100/5/190 ₃]	1.11 (2.0)	
8PA6-10	[190 ₃ /10/100/10/190 ₃]	1.11 (1.9)	
8PA6-5+5	$[190_3/5+5/100/5+5/190_3]$	1.07 (2.1)	
8PA6-10+10	$[190_3/10+10/100/10+10/190_3]$	1.10 (2.8)	
15PA6-2	[190 ₃ /2/100/2/190 ₃]	1.09 (2.2)	
15PA6-5	[190 ₃ /5/100/5/190 ₃]	1.10 (2.2)	
15PA6-10	[190 ₃ /10/100/10/190 ₃]	1.10 (1.9)	

NL- Nanofibrous layer

C- Carbon/epoxy

G- Glass/epoxy

RF- 34 g/m² epoxy film

Gergely Czél, czel@pt.bme.hu

Quasi-static uniaxial tensile test setup

ICCM23, Belfast, 30 July-4 August, 2023

10/22

POLYMER

Test results- Stress-strain response

Test results- Damage modes

- All series performed much better than baseline
- Mixed delamination and fragmentation for the non-pseudo-ductile series
- Close to borderline

Test results- Damage sequence

Delamination + fragmentation (8PA6-2)

1.92% strain (no damage)

Fragmentation (8PA6-10)

Delamination around fragments

ICCM23, Belfast, 30 July-4 August, 2023

Saturation of fragmentation

Gergely Czél, czel@pt.bme.hu

13/22

Test results- NL structure

- Different diameters for different PA6 concentrations
- Nano webs for 15PA6
- Possibly different impregnation properties

Test results- Thickness of the interlayer

Test results- Thickness of the interlayer

Test results- Nanofibre volume fraction in the interlayer

Results- Cross section microscopy

- NLs are well infiltrated with epoxy and form interlayers between the composite layers
- Interlayer thickness is well controlled by the NL areal weight

Anticipated toughening mechanism

- Thick interlayer goes under proportionally lower shear strain
- Can accommodate higher displacements across the interface

٠

- Can extend the damage process zone
- Expected to knock down singular shear stress at the delamination crack tip

Results- Longitudinal section microscopy

8PA6-2

- Thin interlayer cannot suppress delamination completely
- Thick interlayer arrests delamination cracks

Gergely Czél, czel@pt.bme.hu

ICCM23, Belfast, 30 July-4 August, 2023

EGYETEM 1782 POLYMER 20/22

Test results- Effect of extra epoxy film

• Possible synergy between NL and epoxy film stabilising borderline response

Test results- Effect of stacking multiple NLs

- Stacked NLs with the same areal weight perform similarly
- Thicker NL stack improves pseudo-ductility and mode II fracture toughness

Test results- Mode II fracture toughness improvement

- Significant improvement of $G_{\rm IIC}$ from 1.8 kJ/m² (baseline) up to 4.7 kJ/m²
- Saturation is expected above 10+10 g/m² NL areal weight

Results summary- 8PA6 series

		Interleaved configurations [G ₃ /NL/C/NL/G ₃] (NL refers to the Nanofibrous Layer)					
Configuration	Baseline	8PA6-2	8PA6-2+RF	8PA6-5	8PA6-10	8PA6-5+5	8PA6- 10+10
Measured thickness [mm]	1.08	1.09	1.14	1.11	1.11	1.07	1.10
	(1.9)	(2.1)	(2.1)	(2.0)	(1.9)	(2.1)	(2.8)
Elastic modulus [GPa]	58.0	56.6	54.5	55.7	56.8	56.5	54.8
	(2.7)	(2.6)	(2.0)	(3.8)	(1.5)	(4.1)	(4.2)
Knee-point stress [MPa]	1134 ^(a)	1124	1070	1099	1096	1074	1014
	(3.7)	(3.0)	(2.9)	(3.9)	(2.1)	(3.9)	(4.1)
Knee-point strain [%]	1.99 ^(a)	2.02	2.02	2.02	1.97	1.93	1.87
	(3.4)	(3.3)	(3.4)	(2.7)	(1.3)	(1.9)	(2.2)
Strain energy release rate	2.4	2.5	2.4	2.4	2.4	2.1	2.0
@knee-point [kJ/m ²]	(9.3)	(8.3)	(6.9)	(10.2)	(6.4)	(11.1)	(11.9)
Mode II interlaminar fracture toughness ^(b) [kJ/m ²]	1.8 (7.4)	-	-	2.9 (8.1)	3.9 (6.6)	-	4.7 (7.8)

^(a) Evaluated from the load drop in the stress-strain curves of this configuration.

^(b) Measured on $[G_3/NL/C_2/NL/G_3]$ laminates with a cut in the middle of the CF/EP layer.

		Interleaved configurations [G ₃ /NL/C/NL/G ₃] (NL refers to the Nanofibrous Layer)			
Configuration	Baseline	15PA6-2	15PA6-5	15PA6-10	
Measured thickness [mm]	1.08	1.09	1.10	1.10	
	(1.9)	(2.2)	(2.2)	(1.9)	
Elastic modulus [GPa]	58.0	56.8	57.0	57.3	
	(2.7)	(3.1)	(2.7)	(1.5)	
Knee-point stress [MPa]	1134	1122	1113	1108	
	(3.7)	(2.8)	(2.3)	(2.2)	
Knee-point strain [%]	1.99 ^(a)	1.97	1.96	1.96	
	(3.4)	(4.0)	(2.2)	(1.6)	
Strain energy release rate	2.4	2.4	2.4	2.4	
@knee-point [kJ/m2]	(9.3)	(8.0)	(6.0)	(6.9)	

^(a) Evaluated from the load drop in the stress-strain curves of this configuration.

Conclusions

- Pseudo-ductility was achieved in a range of interlayer hybrid configurations by inserting nanofibrous layers (NL) between the GF/EP and CF/EP composite layers.
- Nanofibres electrospun from 8% PA6 concentration solutions performed better than the 15% version.
- The thickness of the interlayers between the composite layers were precisely controlled by the areal weight of the NLs.
- Thick interlayers between the composite plies suppressed delamination because of lower shear strains experienced at given displacements across the interface. Interlaminar cracks were arrested in case of NLs with 5 g/m² areal weight and above. Saturation is expected at NL areal weights higher than 20 g/m².
- The G_{IIC} was significantly increasing with the areal density of the nanofibrous interleaves in the case of 8PA6 NLs, i.e. from 1.8 kJ/m² (baseline) up to 4.7 kJ/m² for the 8PA6-10+10 configuration containing NLs with a total areal density of 20 g/m².

Further details:

Marino S. G., Kuželová Košťáková E., Czél G. : Development of pseudo-ductile interlayer hybrid composites of standard thickness plies by interleaving polyamide 6 nanofibrous layers. Composites Science and Technology, **234**, 109924/1-109924/14 (2023)

10.1016/j.compscitech.2023.109924

Gergely Czél, czel@pt.bme.hu

Acknowledgement

NATIONAL RESEARCH, DEVELOPMENT AND INNOVATION OFFICE

Hungarian Academy of Sciences

1825

Special thanks to **Dr. Eva Kuželová Košťáková** for providing the nanofibrous layers for our study. The research leading to the presented results has been performed within the framework of the HyFiSyn project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765881. The research was also supported by the National Research, Development and Innovation Office (NRDI, Hungary) through grant OTKA FK 131882. Gergely Czél is grateful for funding through the János Bolyai Research Fellowship Programme of the Hungarian Academy of Sciences. The work was supported by the ÚNKP-22-5-BME-323 New National Excellence Program of the Ministry for Culture and Innovation from the source of the National Research, Development and Innovation Fund.

Thank you for your attention!

Budapest University of Technology and Economics (BME)

PSEUDO-DUCTILITY IN LAYER-BY-LAYER HYBRID COMPOSITES THROUGH PRECISE CONTROL OF THE INTERLAYER THICKNESS

Gergely CZÉL (czel@pt.bme.hu) Salvatore Giacomo Marino (marinos@pt.bme.hu) Budapest University of Technology and Economics (BME) Department of Polymer Engineering

ICCM23 – International Conference on Composite Materials, Queen's University Belfast, UK, 30 July-4 August 2023