

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

Design, simulation and prototyping of the multifunctional composite structure of an "Hyperloop" vehicle

M.Cailleteau¹, J.Cugnoni¹

GRIPIT¹ research group

Groupe de Recherche Interdisciplinaire en Projet Innovant de Transport

¹Institute of mechanical design and materials, University of Applied Sciences West Switzerland

(HES-SO) - School of management and engineering Vaud (HEIG-VD),

Yverdon-les-Bains, Switzerland

Contact: joel.cugnoni@heig-vd.ch

[1] GRIPIT web site: link

Research Project objectives

- Evaluate solutions to meet future transport needs in Switzerland
 - Short distances: 40-100km
 - Small footprint

Hes·so

• Sustainable development : energy consumption < current transport

A REAL PROPERTY AND A REAL

- Support spatial planning / geographical distribution of facilities
- Added value > train/car
- Solution considered: Vacuum levitation vehicle
 - Magnetic levitation
 - Electromagnetic propulsion
 - Aerodynamics
 - Thermal management
 - Highly reliable multifunctional structure

HE[™] Hes∙so

Development process

- Multi-physics 'system' model
 - Main quantities: energy, mass, dimensions, traffic
- Vehicle dynamic simulation
 - Including magnetic levitation and track defects => dynamic forces
- Concept of a reliable multifunctional composite structure
 - High fatigue resistance
 - Vacuum resistant (100 Pa)
 - Fault and crack tolerant
 - Self-sealing of cracks
 - <u>Crack detection</u>
 - Heat dissipation studies via the shell
- Prototyping
 - Additive manufacturing process for shell and sensors
 - Manufacture of a shell (3m) with detection system

Schematic of self-sealing

Vehicle dimensions and specifications

• Typical range: 60km

HE[™] Hes⋅so

- Vehicle diameter: 3m
- Tunnel diameter: 4.5m
- Vehicle length: 15m
- Capacity: 42 passengers
- Rated speed: up to 600km/h
- Cabin pressure: 1013 hPa
- Tunnel pressure: 100 Pa
- Lifetime of 160'000 pressurisation cycles

Hes.so General dimensions

The interior dimensions are bus-like and maximized for a fixed hull diameter.

The current pre-design is only a first step towards the structural analysis & feasibility study.

HE[™] Hes·so

Heat dissipation via the shell

- Tunnel : 15°C @100 Pa
- Vehicle interior temperature : 25°C
- Power to be dissipated: 343 kW
- Concepts considered:
 - Accumulator (water tank)
 - Evaporative cooling
 - Radiation and external convection
 - Radiation, internal and external convection
 - Frontal radiator

Heat sink concept by radiation and forced convection

Hes-so Comparison of concepts

- 120-day period between two pressurizations of the tunnel (maintenance)
- Includes compensation for tunnel leakage and vacuuming
- Each solution includes an accumulator to store the undissipated energy

	Total vehicle mass [kg]	Battery mass [kg]	Water tank mass [kg]	Average consumption of the tunnel-vehicle system [kWh/km/passenger]	Efficiency * compared to the accumulator	Evaporative cooling:
Accumulator (water tank)	18900	362	830	0,036		Low weight but high vaccuum energy
Evaporative cooling	18000	350	66	1,246	3461%	
Radiation and external convection	21700	402	832	0,039	108%	Shell with heat
Radiation, internal and external convection	22400	413	823	0,040	111%	exchange: No gain in these conditions
Frontal radiator	19000	364	834	0,036	100%	

HE[®] Hes.so

Composite shell design

- The chosen fuselage is of the semi-monocoque type
 - Hull thickness = 3mm, Mostly quasi-isotropic carbon/epoxy, Fiber : Toray T700 or equivalent
- Spacing of stringers and frames is determined to stop a critical crack in two bays
 - Stinger spacing = 135mm, Frame spacing = 545mm
- Load sharing between skins and frame structure:
 - The skin is designed to withstand 100% of the pressure loading.
 - The reinforcements are designed to withstand 80% of the pressure loading as a safety measure. Frame spacing at half the critical crack length for crack arrest.
- The total mass of the composite fuselage is 2960kg

Hes.so Fuselage crack arrest capability

- Critical crack length = $2a_{\rm c}$
- Critical flaw size which will cause brittle failure to occur in one cycle: $a_c = \frac{1}{\pi} \left(\frac{K_c}{\sigma}\right)^2$
 - K_c: Mode I critical stress intensity factor
 - σ_{χ} : Circumferential stress: $\sigma_{\chi} = 2\sigma_{\theta}$
 - σ_{θ} : Axial stress: $\sigma_{\theta} = \frac{pr}{2t}$
 - t: Shell thickness is calculated to withstand pressure without reinforcements: t = 3mm
 - p: Inside outside pressure difference : p = 101200Pa
 - r: Mean hull radius : r = 1498,5mm
- With $K_c = 3,31 \cdot 10^7 \frac{Pa}{\sqrt{m}}$
 - $a_{cx} = 0,545mm$
 - $a_{c\theta} = 0,135mm$

Evaluation of Fatigue Crack Arrest Capability in Fuselage of Large Transport Aircraft. 1. 13-22.

Integrated crack detection sensor

HE[™] Hes·so

Video of hot peeling

HE[™] Hes·so

Description of mechanical tests

- Tensile test specimen:
 - 30 x 100 x 0,5mm
 - Two layers of epoxy adhesive with glass carrier Gurit SA80
 - Up to 800N
- Compact tension specimen:
 - 75 x 75 x 4mm
 - Initial crack length = 40mm
 - Carbon fibber and epoxy
 - Up to 9000N
- Aluminium strips:
 - 30 x 2 x 0,08mm

Initial length = 100mm

Compact-tension tests results

Gauge length = 32 mm

Hes.so Videos of mechanical tests

Compact tension test

HE[®] Hes·so IG Prototype for test t

- Prototype for test tunnel
- Tunnel length: 120m
- Tunnel diameter: 2m
- Tunnel pressure: 100Pa
- Hull length: 3m
- Hull diameter: 0.6m
- Hull pressure: unpressurised
- Hull thickness: 1.5mm
- Acceleration: 8g
- Deceleration: 10g
- Maximum speed: 34m/s

Hes.so Multi-functional composite shell prototyping

Hes.so Robotic 3d printing of masters

Conclusions

Hes·so

- Evaluated many different designs to optimize energy per passenger
- Pre-design of a 40 seats vehicle
- Developed a multi functional composite hull to address the main challenges
- Heat management:
 - integrated heat exchange in the hull does not bring significant benefits vs its complexity. But could be useful for much longer travel distances.
- Structural safety:
 - risk of high cycle fatigue cracking, managed by a classical aeronautic skin/frame design for crack arrest and structural redundancy
- Crack detection monitoring :
 - simple integrated metallic film sensor design that can be mass produced and integrated in the skins during manufacturing
- Prototype development:
 - Use large scale robotic additive manufacturing for mold production and sensor integration (in progress)

Thank you for your attention !

Hes·so

Haute Ecole Spécialisée de Suisse occidentale

Fachhochschule Westschweiz

University of Applied Sciences and Arts Western Switzerland

This work was funded by HES-SO Switzerland in the framework of the transdisciplinary GRIPIT project on innvative transport systems For more details, see: <u>https://shorturl.at/yRUY2</u>