TAILORED SOLID-LIQUID COMPOSITE FOR ENHANCED COMFORT IN ORTHOTIC INSOLES

DAYNA CRACKNELL | MARK BATTLEY | MAEDEH AMIRPOUR | JUSTIN FERNANDEZ THE UNIVERSITY OF AUCKLAND

Insoles for Comfort and Injury Prevention

Introduction to Orthotic Insoles

Peak pressure points and the plantar pressure distribution have a strong correlation with discomfort and likely regions for injury.

58% of lower-limb amputations in New Zealand are performed on patients with diabetes. Typically, amputations in these patients are proceeded with a foot ulcer.

Orthotic insoles aim to even out the plantar pressure distribution to lower the peak pressure points.

Static behavior

- Aim for an even distribution of pressure to lower peak plantar stresses.
- Achieved through custom orthotics with total plantar contact.

Dynamic behavior

• Optimize shock absorption and dynamically redistribute pressure.

Standard Foam Orthotic Insole

SLC Orthotic Insole

Overview of Strucutre

A SLC allows us to adjust the rate dependent and rate independent response of the structure.

Solid Liquid Composite

Structural Response

Solid Liquid Composite

Fluid Response

- Adjusting the aspect ratio of the unit cell effects the tortuosity.
- Tortuosity has a direct relationship with the permeability of a gyroid, where the more tortuous the structure, the lower the permeability.

Overview

Structural Response – Numerical Modelling

FEA

- FEA was carried out on ABAQUS.
- The gyroid geometry was compressed between two rigid platens.

0% Compression

- The numerical study made it feasible to do an extensive parameter sweep on the gyroid's geometric properties
- The key output from this study was the force-displacement response.

25% Compression

50% Compression

Manufacturing

Structure **Experimental** Fluid **Experimental**

Selective Laser Sintering

• Formlabs 3 Form Printer – Elastic 50A Resin

Compressive Testing

Validation

Validation

Numerical Approach

Darcy's Law k ∇p q =μ

Parameters to vary included:

- Unit cell size
- Cell thickness
- Aspect ratio

Fluid Response

- A gyroid sample was tested in a through-thickness permeability set up.
- The permeability calculated from this experiment was used to validate the numerical models
- Results aligned with numerical results within 10% on average.

Numerical Modelling of the SLC

Homogenisation of a SLC

Numerical Modelling of the SLC

Parameter Study

- Using ABAQUS, the material is assigned a hyperelastic model and a permeability.
- The SLC geometry is enclosed, and compressed by a hemispherical indenter.
- The main output is the force-displacement data for a variety of indentation speeds.

Experimental Analysis

Validation of the Numerical Model

- Fully enclosed, fluid filled disk samples were printed.
- The SLC liquid is mineral oil.

- SLC samples were tested in a replica set up of the numerical model.
- Each sample was impact tested at 3 different speeds.

- Modelling the SLC using the homogenisation methods described is effective for a extensive parametric study.
- Results must be checked through numerically modelling the non-homogenised geometry, then validated through experimental testing.
- The rate dependant effects of the SLC are capable of providing energy absorption properties and pressure redistribution effects.

Next Steps

SLC for Orthotic Insoles

Integrating the homogenised model into an optimisation framework to assign properties to different regions of an orthotic insole. Implementation in a full scale orthotic insole, both numerically and experimentally, to assess its effectiveness compared to a standard foam insole.

