

Characterization and Simulation of the Interface Between Continuously and Discontinuously Fiber Reinforced Thermoplastics

Nicolas Christ, Benedikt Scheuring, John Montesano, Jörg Hohe

www.kit.edu

Content

Motivation

- Thermoplastic Co-DiCo FRP
- Influence of Humidity

Method

- Climbing Drum Peel Test
- Experimental investigation
- Numerical investigation
- Results
 - Experimental
 - Numerical
- Outlook

Material: Polyamide 6 (PA6) + Carbon Fiber Process: LFT-D

Why CoDiCo?

Research Centre (ICRC)

Water absorption in PA6

Interface characterization

- Available experiments
 - Normal direction
 - Double Cantilever Beam (DCB)
 - Climbing Drum Peel Test (CDP)
 - Shear direction
 - End Notched Flexure Test (ENF)
 - Interlaminar Shear Strength Test (ILSS)

Kinematics

Experimental Setup

u

u

- Numerical Setup
 - Extensive study on material properties (fiber content, orientation, ...)

Numerical Setup

- Extensive study on material properties (fiber content, orientation, ...)
- Interface modelled with Cohesive Surface

U

u

Results

Experimental: Force over Displacement

u

Results

Experimental: Force over Displacement

Fractography

Karlsruhe Institute of Technology

Results

17

Fractography

18 31.07.2023 Interface Between Continuously and Discontinuously Fiber Reinforced Thermoplastics

Experimental Findings:

- Dry interface has lower fracture toughness
 - Alternating ductile/brittle crack propagation leads to lower energy absorption when crack propagates
 - Magnitude of oscillation is increased
- Hypothesis: water absorption allows for enhanced polymer chain mobility and increases elongation at failure, thus ductile fracture is enhanced

Numerical (work in progress):

Numerical Findings:

- Energy release rate from experiment can be used in CZ to capture effective behavior
 - Magnitude of oscillations still challenging
- Confirmation that energy release rate is significantly greater with water absorption

Outlook

- Experimental:
 - Conduct more experiment for different conditioning states
 - Does more water always lead to a greater energy release rate?
- Numerical:
 - Achieve better fitting by conducting numerical studies on the effects of...
 - Mesh size
 - Damage initiation parameter
 - Material parameters of Co and DiCo
 - ...

References

[1] Kärger, Hrymak, Henning, Weidenmann, Böhlke, Wood - Continuous-Discontinuous Fiber-Reinforced Polymers - An Integrated Engineering Approach. Carl Hanser Verlag, 2020

[2] Scheuring et al. (2022) – Comparison of influence of hydrothermal aging on the mechanical properties glass and carbon long fiber-reinforced polyamide 6

[3] Christ et al. (2023) – Extraweich/homopy: v1.0.11 (1.0.11). Zenodo. https://doi.org/10.5281/zenodo.7967631

[4] Schober (2019) – On the Characterization and Modeling of Interfaces in Fiber Reinforced Polymer Structures

Thank you for your attention!

The research documented in this manuscript has been funded by the German Research Foundation (DFG) within the International Research Training Group "Integrated engineering of continuous-discontinuous long fiber-reinforced polymer structures" (GRK 2078).

The support by the German Research Foundation (DFG) is gratefully acknowledged.

Members of the International Research and Training Group GRK 2078

Ductile/brittle alternation

