

The 23rd International Conference on Composites Materials, July 30th-August 4th, 2023, Belfast, Northern Ireland

Simultaneous monitoring on forming pressure and residual strain of CFRP using PSFBG

C.H. Chen^{1*}, Q. Wu^{1*}, H.Z. Zhai¹, H.Q. Zhang¹, K. Xiong¹, T. Sun^{2, 3} and K. T. V. Grattan^{2, 3}

 ¹ State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of Aeronautics and Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
 ² Department of Electrical and Electronic Engineering, City, University of London, London, United Kingdom
 ³ Sengenia Ltd., University Road, Belfast, United Kingdom

* Corresponding: chenchanghao@nuaa.edu.cn; wu.qi@nuaa.edu.cn

Background

Sensing principle

3 Forming monitoring experiment

4 Thermomechanical analysis

Conclusion

1.1 Carbon fiber reinforced thermoplastic (CFRTP)

Author	Matrix	Performance	Forming process	
CFRTP	Thermoplastic	Impact resistance, recyclability, short production time	High temperature and pressure	
CFRP	Thermosetting	High specific stiffness	Low temperature and pressure	
* CFRTP: carbon fiber reinforced thermoplastic, CFRP: carbon fiber reinforced polymer				

1] http://www.comac.cc [2] https://en.wikipedia.org/wiki/General_Electric_GEnx [3] https://www.plastics.gl/automotive/composites-above-the-clouds	1] http://www.comac.cc	[2] https://en.wikipedia.org/wiki/General_Electric_GEnx	[3] https://www.plastics.gl/automotive/composites-above-the-clouds
---	------------------------	---	--

Warpage

Warpage may lead to structural failure [4].

Forming pressure

Forming pressure affects porosity [5] and R-zone quality [6].

Out-of-plane strain that occurs during the forming process closely correlates with pressure and has a significant impact on product quality.

1.3 In-plane strain and temperature monitoring using FBG

Fiber Bragg grating (FBG)

Small size, light weight, high temperature resistance, multiplexing capability, anti-electromagnetic interference

in-situ forming monitoring of CFRTP using FBG

Author	Reinf/Matrix	<i>Max. temp.</i> (°C)	Max. pressure (MPa)
Lubineau and Mulle et al. [7]	GF/PP	210	0.75
Takeda and Tsukada et al. [8]	CF/PPS	325	0.1

[7] Mulle M, Wafai H, Yudhanto A, Lubineau G*, et al. Compos Sci Technol 2016, 123: 143.

[8] Tsukada T*, Takeda SI, Minakuchi S, et al. J Compos Mater 2016, 0(0): 1-11.

1.4 Out-of-plane strain monitoring using FBG

There is a lack of a straightforward and precise multi-directional strain monitoring technique under the harsh conditions of CFRTP forming.

[9] Sorensen L, Gmür T, Botsis J*. *Compos Part A* 2006, 37(2): 270.
 [10] Lammens N*, Kinet D, Chah K, Luyckx G, et al. *Compos Part A* 2013, 52: 38.

1 Background

2 Sensing principle

3 Forming monitoring experiment

4 Thermomechanical analysis

5 Conclusion

2.1 Phase-shifted fiber Bragg grating (PSFBG)

- PSFBG has an extremely narrow transmission peak due to phase shift.
 Temperature and axial strain wavelength shift.
 - Transverse strain birefringence.

2.2 Basic equations

$$\frac{\Delta\lambda_{B,1}}{\lambda_{B}} = \varepsilon_{3}^{S} - \frac{n_{eff}^{2}}{2} [p_{11}\varepsilon_{1}^{S} + p_{12}(\varepsilon_{3}^{S} + \varepsilon_{2}^{S})] + \xi\Delta T, \quad (1)$$
$$\frac{\Delta\lambda_{B,2}}{\lambda_{B}} = \varepsilon_{3}^{S} - \frac{n_{eff}^{2}}{2} [p_{11}\varepsilon_{2}^{S} + p_{12}(\varepsilon_{3}^{S} + \varepsilon_{1}^{S})] + \xi\Delta T, \quad (2)$$

南京航空航天大學 航空学院

 ε_i^{S} : principal strains ΔT : temperature change p_{11} and p_{12} : strain-optic coefficients ξ : temperature sensitivity

Adding and subtracting Equations (1) and (2)

$$\frac{\Delta\lambda_{B,1} + \Delta\lambda_{B,2}}{2} = \kappa_1 \varepsilon_3^S + \kappa_2 (\varepsilon_1^S + \varepsilon_2^S) + \kappa_3 \Delta T, \quad (3)$$

$$\frac{\Delta\lambda_{B,1} - \Delta\lambda_{B,2}}{\Delta\lambda_{B,1} - \Delta\lambda_{B,2}} = \kappa_4 (\varepsilon_1^S - \varepsilon_2^S), \quad (4)$$

The derived equation indicates the correlation between spectral changes and three-directional strains.

2.3 Transfer matrix method

Continuous wavelength sweep can finely characterize the narrow transmission peak of PSFBG with a resolution of 0.1 pm.

Sensing principle

2.5 Calibration

The sensitivities of temperature, axial strain, and transverse strain are calibrated before forming monitoring.

Background

Sensing principle

3 Forming monitoring experiment

4 Thermomechanical analysis

Conclusion

PSFBG: phase-shifted fiber Bragg grating (FYBSENSE, 1545 nm) EFBG: encapsulated fiber Bragg grating (SHENGHAI, 1550 nm) SG: strain gauge (KYOWA, KFU-2-120-C1-16) TC: thermocouple (CHINO, C060-K) Ply 1-8: CF/PEI prepregs (TORAY, Cetex TC1000 Premium) Al foil: aluminum foil Steal Pad: 1 mm Protection: steel capillary

No obvious resin rich area can be observed.

 ε_3^S and $|\varepsilon_1^S - \varepsilon_2^S|$ can be determined based on the wavelength shift and *\Delta FWHM* of the transmission peak.

3.4 Temperature monitoring

The forming temperature can be precisely monitored with an average difference of 3 °C compared to the TC.

3.5 Axial strain monitoring

The axial residual strain can be precisely monitored with an average difference of 92 με compared to the FBG during the cooling phase.

3.6 Transverse strain monitoring

The knee points of both ε_3^S and $|\varepsilon_1^S - \varepsilon_2^S|$ occur at T_{II} , which can be attributed to enhanced interfacial bonding.

Background

Sensing principle

3 Forming monitoring experiment

4 Thermomechanical analysis

Conclusion

南京航空航天大學 航空学院 **Thermomechanical analysis** 5 **5.1 Finite element model** (b) (a) Pressure & Temperature $U_3 = UR_1 = UR_2 = 0$ $U_1 = UR_2 = UR_3 = 0$ --- Upper tool: 6 mm шШ Тор ••► CFRTP (1.08 mm) 8 Release film 5 Left (0.22 mm) Front ⁷0 mm 70 mm Lower tool: 8 mm $U_2 = 0$ Temperature

Material properties

Mesh

Part	Material	ρ (t/mm ³)	$C_p (\mathbf{mJ} \cdot \mathbf{K}^{-1} \mathbf{t}^{-1})$	k (mW•mm ⁻¹ K ⁻¹)	E (MPa)	V	α (K ⁻¹)	Item	Value
Tool	Steel	8.03×10 ⁻⁹	5×10^{8}	16.3	193000	0.29	18.4×10 ⁻⁶	Element	C3D20RT
Shear layer	Al	2.73×10-9	9.2×10^{8}	19.3	70000	0.33	24×10 ⁻⁶	Global size	1 mm
CFRTP	CF/PEI	Homogenized, temperature dependent, orthotropic material properties [13]				Node num	315311		

[13] Zhai HZ, Wu Q*, Yoshikawa N, Xiong K, Chen CH, et al. J Compos Mater 2023, 0(0), 1-22.

5 Thermomechanical analysis

5.2 Strain distribution

The impact of CFRTP residual strain on PSFBG spectra is investigated based on the simulation results.

Strain distribution in ply 5 containing the PSFBG

In-plane strains converge to asymptotic values from edges to the center, while the out-of-plane strain exhibits a radial distribution.

Background

Sensing principle

3 Forming monitoring experiment

4 Thermomechanical analysis

Conclusion

6 Conclusion

PSFBG characteristics for CFRTP forming monitoring

Wavelength shift exhibits a cubic relation with temperature and linear relation with axial strain. FWHM exhibits a linear relation with transverse strain difference.

Strain transfer and decoupling

12 Strain relation between CFRTP and PSFBG is characterized by a strain transfer matrix, deriving the three-directional strain decoupling method.

Temperature and three-directional strain monitoring

Temperature shows a difference of 3 °C compared to TC. ε_3^H shows a difference of 92 $\mu\epsilon$ compared to FBG. ε_1^H and ε_2^H show max. difference of 124 $\mu\epsilon$ compared to simulation.

Forming pressure characterization

Out-of-plane strain of CFRTP exhibits higher contraction under higher forming pressure, enabling the potential for forming pressure monitoring.

Funding

National Key R&D Program of China (2021YFF0501800).

National Natural Science Foundation of China (11972016, 12111530106).

Fund of State Key Laboratory of Mechanics and Control for Aerospace Structures (MCMS-I-0521G04).

Acknowledgement

THANK YOU For Listening