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BACKGROUND OVERVIEW & MOTIVATION 

• Background (Free-edge effect):

Potential singular localized three-dimensional stress fields arise in       

the vicinity of interfaces between dissimilar laminate layers.

• Motivation:

1. Although free-edge effect has been under scientific investigation 

for more than 5 decades, it remains an open problem to predict 

the stress concentrations and associated delamination accurately.

2. Numerous closed-form, semi-analytical, and numerical methods 

have been proposed, however, each have documented either 

limitations or are computationally expensive.

Free-edge effect [1] 
[1] Mittelstedt C, Becker W, Kappel A, Kharghani N. Free-Edge Effects in Composite Laminates-A Review of Recent Developments 2005-2020. Appl Mech Rev 2022;74:1–18
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• To develop a method to obtain interfacial fracture parameters in a 
symmetric/hybrid stacked laminates.

• Utilising the above parameters to propose a failure criterion based on 
Finite Fracture Mechanics (FFM).

AIMS & OBJECTIVES

3
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INTERFACIAL STRAIN ENERGY RELEASE RATE
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• Preliminary dimensional analysis for a general
two-ply bi-material system.

Where 𝜓𝑖 is non-dimensional correction factor, 

𝛼 = 𝑎/𝐻
𝛽 = 𝑏/𝐻

𝒢 = 𝒢
𝜎∞ , 𝑎, 𝑏, 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 , 𝜙 , ℎ, 𝐻,𝑊, 𝐿 ,

𝐸1
𝑠, 𝐸2

𝑠, 𝐺12
𝑠 , ʋ12

𝑠 , ʋ23
𝑠 , 𝐸1

𝑚, 𝐸2
𝑚, 𝐺12

𝑚 , ʋ12
𝑚 , ʋ23

𝑚

𝒢𝑖 𝜔, 𝜇, 𝜂, 𝛼, 𝛽, 𝜙 =
𝜎∞

2ℎ

𝐸′
𝜓𝑖
2 𝜔, 𝜇, 𝜂, 𝛼, 𝛽, 𝜙 𝑖 ∈ 𝑥, 𝑦, 𝑧

normalised crack 

semi-axes

[2] Tsai SW, Melo JDD. An invariant-based theory of composites. Compos Sci Technol 2014;100:237–43. https://doi.org/10.1016/j.compscitech.2014.06.017.

𝜙 polar angle along the crack front

𝜂 = Τ𝐻 ℎ normalised geometric parameter

𝜔 = Τℑ𝑚 ℑ∗

𝜇 = Τℑ𝑠 ℑ∗
normalised material 

parameters (traces [2])

ℑ∗
reference value (average 3D 

trace of CFRP considered) 

𝐶 =

𝐶𝑥𝑥 𝐶𝑥𝑦 𝐶𝑥𝑦 0 0 0

𝐶𝑦𝑥 𝐶𝑦𝑦 𝐶𝑦𝑧 0 0 0

𝐶𝑦𝑥 𝐶𝑧𝑦 𝐶𝑦𝑦 0 0 0

0 0 0 2𝐶𝑠𝑠 0 0
0 0 0 0 2𝐶𝑠𝑠 0
0 0 0 0 0 2𝐶𝑍𝑍

𝐸′ = ℑ𝑚. 𝜔/𝜇 equivalent modulus
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MODE-MIXITY ALONG CRACK FRONT
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• For a given material 𝜔, 𝜇 and thickness 𝜂 parameter, mode-mixity ratios are dependant on polar angle 𝜙 & 
crack profile (𝛼, 𝛽): 

𝑀𝐼𝐼(𝜙, 𝛼, 𝛽) =
𝒢𝐼𝐼

𝒢𝐼 + 𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼

𝑀𝐼𝐼𝐼(𝜙, 𝛼, 𝛽) =
𝒢𝐼𝐼𝐼

𝒢𝐼 + 𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼

𝛼

𝛽
𝛼𝑚𝑎𝑥, 𝛽𝑚𝑎𝑥

𝑐𝑟𝑎𝑐𝑘 𝑟𝑒𝑔𝑖𝑜𝑛

𝛼𝑚𝑖𝑛, 𝛽𝑚𝑖𝑛

𝜙
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Influence of crack parameters 𝛼 and 𝛽 on norm. ERR
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• ERR distribution is computed using 3D-VCCT (Abaqus in-built) for metal/90.

Dependence of norm. ERRs on 𝛼
and 𝛽 is due to not only crack 
profile but ply orientation also. 

𝜓𝑇
2 = 𝜓1

2 + 𝜓2
2 + 𝜓3

2

𝑦

𝑧

𝑇𝑖𝑡𝑎𝑛𝑖𝑢𝑚 − 𝐺𝑟𝑎𝑑𝑒 2

𝐶𝐹𝑅𝑃 90°

ℎ

𝐻
𝑚𝑜𝑑𝑒 𝐼

𝑚𝑜𝑑𝑒 𝐼𝐼
𝑚𝑜𝑑𝑒 𝐼𝐼𝐼
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FRACTURE CRITERION SPECTRUM
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𝑎 𝑎

Strength of materials Fracture mechanics

𝑓(𝜎𝑖𝑗 𝑥𝑖), 𝜎𝑐 ≥ 1

• When stresses are 
greater than the strength

ℎ(𝒢𝑔 ∆𝑎 , 𝒢𝑐) ≥ 1

• When energy release rate is 
greater than the fracture 
toughness

Finite Fracture Mechanics (FFM)[3]: Both conditions are 
necessary and together as one they become sufficient 
for a crack onset.

[3] Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 2002;21:61–72.

• Strength of materials and energy based fracture 
mechanics prevail paradoxical results due to singular 
behaviour of stresses and absence of physical crack.

No stress singularity Existence of a crack (flaw)

Weak stress singularity and absence of a crack (flaw)

𝑓(𝜎𝑖𝑗 𝑥𝑖), 𝜎𝑐 ≥ 1 ∧ ℎ(𝒢𝑔 ∆𝑎 , 𝒢𝑐) ≥ 1
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INCREMENTAL ENERGY RELEASE RATE (IERR)
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• Griffth’s ERR: differential form   

Semi-elliptical crack front
𝒢 = −

𝑑𝜋

𝑑𝑎
where a is crack length

• Incremental ERR: incremental form  

𝒢 = −
Δ𝜋

Δ𝑎

• Therefore, 𝒢
𝑖

can be calculated from integral average of 𝒢𝑖

𝒢𝑖 =
1

Δ𝑎
න
0

Δ𝑎

𝒢𝑖 𝑑𝑎 =
𝜎∞

2ℎ

𝐸′
1

𝐴
ඵ

0

𝐴

𝜓𝑖
2𝑑𝑎 =

𝜎∞
2ℎ

𝐸′
Λ𝑖

𝒢𝑖 is IERR for mode 𝑖, gives energy rate required to nucleate a crack of area 𝐴(area of semi-ellipse).

Λ norm. IERR
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INTERLAMINAR STRESSES COMPUTATION 
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𝝈 = 𝝈
𝜎∞ , 𝑦 , 𝐻, ℎ ,

𝐸1
𝑠, 𝐸2

𝑠, 𝐺12
𝑠 , ʋ12

𝑠 , ʋ23
𝑠 , 𝐸1

𝑚, 𝐸2
𝑚, 𝐺12

𝑚 , ʋ12
𝑚 , ʋ23

𝑚

𝜎𝑖𝑧 𝜔, 𝜇, 𝜂, 𝑦′ = 𝜎∞ 𝜒𝑖𝑧 𝜔, 𝜇, 𝜂, 𝑦′ 𝑖 ∈ 𝑥, 𝑦, 𝑧

where 𝜒𝑖𝑧 is non-dimensional stress functions. 

𝑦′ = Τ𝑦 𝑡

• Interlaminar stresses computed using Abaqus for a general two-
ply bi-material system :

Dimensional analysis 

normalised 

geometrical parameter

• Resin layer modelling: 2% of 𝐻 as thickness (revealed parametric 
study on angle-ply laminate in comparison with literature). 

𝑥

𝑦

𝑧

𝜎∞

𝑟𝑒𝑠𝑖𝑛 𝑟𝑖𝑐ℎ 𝑙𝑎𝑦𝑒𝑟

𝐿

ℎ

𝐻

2𝑊

𝑆𝑙𝑎𝑣𝑒 𝑙𝑎𝑦𝑒𝑟
𝐸1
𝑠, 𝐸2

𝑠, 𝐺12
𝑠 , ʋ12

𝑠 , ʋ23
𝑠

𝑀𝑎𝑠𝑡𝑒𝑟 𝑙𝑎𝑦𝑒𝑟
𝐸1
𝑚, 𝐸2

𝑚, 𝐺12
𝑚 , ʋ12

𝑚 , ʋ23
𝑚

𝜎∞

Before delamination onset
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FINITE FRACTURE MECHANICS (FFM) CRITERION
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• FFM coupled criterion [4]:

10

2𝜎∞
𝜋𝑎𝑏

න
−𝑎

𝑎

න
0

𝑏/𝑎 𝑎2−𝑥2 𝜒𝑧𝑧
𝑋𝑧

2

+
𝜒𝑧𝑦
𝑆𝑦

2

+
𝜒𝑧𝑥
𝑆𝑥

2

𝑑y 𝑑𝑥 ≥ 1

2𝜎∞
2ℎ

𝜋𝑎𝑏 𝐸′
≥

𝒢𝑐

𝑎−
𝑎
0
𝑏/𝑎 𝑎2−𝑥2

𝜓𝐼
2 + 𝜓𝐼𝐼

2 + 𝜓𝐼𝐼𝐼
2 𝑑y 𝑑𝑥

S𝑡𝑟𝑒𝑠𝑠 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛

Identify Description

2 non-linear integral system 
of equations

3 variables: 𝜎∞, 𝑎, 𝑏

Interfacial intrinsic 
parameters (strength & 

fracture toughness)

𝑋𝑧, 𝑆𝑦, 𝑆𝑥;

𝒢𝑐,

Numerically calculate non-
dimensional functions

𝜒𝑧𝑧, 𝜒𝑧𝑦, 𝜒𝑧𝑥;

𝜓𝐼, 𝜓𝐼𝐼, 𝜓𝐼𝐼𝐼

[4] Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 2002;21:61–72.

𝑓(𝜎𝑖𝑗 𝑥𝑖), 𝜎𝑐 ≥ 1 ∧ ℎ(𝒢𝑔 ∆𝑎 , 𝒢𝑐) ≥ 1
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HYPOTHESIS: HOMOTHETIC CRACK EXTENSION
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• 3D-interface semi-elliptical edge crack leads to optimization problem: 

𝐹𝑓 = 𝑚𝑖𝑛
𝐹,∆𝐴

𝐹 | 𝑓(𝜎𝑖𝑗 𝑥𝑖), 𝑆𝑥 , 𝑆𝑦 , 𝑋𝑧 ≥ 1 ∀ 𝑥𝑖 ∈ Ω𝑐

∧ ℎ 𝒢𝑔 ∆𝐴 , 𝒢𝐼𝑐 , 𝒢𝐼𝐼𝑐 , 𝒢𝐼𝐼𝐼𝑐 ≥ 1
Obj function:

𝜎∞ 𝜎𝑖𝑗(𝑥𝑖), 𝑆𝑥 , 𝑆𝑦 , 𝑋𝑧 = 𝜎∞ 𝒢𝑔 ∆𝐴 , 𝒢𝐼𝑐 , 𝒢𝐼𝐼𝑐 , 𝒢𝐼𝐼𝐼𝑐Constraints:

Homothetic Crack 
extension path

• Homothetic crack extension: aspect ratio of crack constant
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NORM. IERR OF HERCULES AS1/3501-6
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Dependence of ERRs on 𝛼 and 𝛽 is due to 
the crack profile and ply orientation  

𝑦

𝑧

𝜎∞

𝜎∞
𝐿

ℎ

2𝑊

𝑥

[±15]𝑠

𝑚𝑜𝑑𝑒 𝐼𝐼𝐼
𝑚𝑜𝑑𝑒 𝐼𝐼𝑚𝑜𝑑𝑒 𝐼
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INTERLAMINAR STRESSES OF HERCULES AS1/3501-6 
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[5] Lagace P, Brewer J, Kassapoglou C. Effect of Thickness on Interlaminar Stresses and Delamination in Straight-Edged Laminates. J Compos Technol Res 1987;9:81–7

• Weak singularity is observed at the free edge in interlaminar 
shear stress.

[±15]𝑠
𝑦

𝑧

𝜎∞

𝜎∞

𝐿

ℎ

2𝑊

𝑥
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FAILURE PREDICTION of AS1/3501-6
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• Failure load is where stress and energy criterion meets which correspond to 
minimum load. 
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Validation of FFM criterion of AS1/3501-6
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• FFM predicts precisely the delamination onset 
evolution within the error bars of tests [6] for 
each ‘n’.

• FFM predicts normalised crack onset width 
Τ0.5 ≤ Δ𝑏𝑓 ℎ ≤ 2 close to 1 which is in 

accordance to [7].

[6] Brewer JC, Lagace PA. Quadratic stress criterion for initiation of delamination. J Compos Mater 1988;22:1141–55.

[7] Diaz AD, Caron J-F. Prediction of the onset of mode III delamination in carbonepoxy laminates. Compos Struct 2006;72(4):438–45.

ℎ0 = 0.169 𝑚𝑚

Τ= ℎ ℎ0
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SUMMARY
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• Conclusions

• A method of calculating ERR distribution of semi-elliptical cracks was developed by using 

3D-VCCT.

• Mode-mixity was studied and it was observed that it not only is influenced by polar angle 

along the crack front but crack profile as well.

• Similar approach was performed for interlaminar stresses to develop a FFM criterion.

• Validation of FFM criterion with experimental values indicated very close agreement.

• Future Work

• Extend current FFM criterion to fatigue scenario (Experimental campaign).
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