The 23rd International Conference on Composite Materials (ICCM23)

1st Aug 2023

A SEMI-ANALYTICAL METHOD FOR MEASURING THE STRAIN ENERGY RELEASE RATES OF ELLIPTICAL CRACKS- A NOVEL FINITE FRACTURE MECHANICS-BASED FAILURE CRITERION APPLICATION

Mohammad Burhan, Dr Tommaso Scalici, Dr Zahur Ullah, Dr Zafer Kazancı, Prof. Brian G. Falzon, Dr Giuseppe Catalonotti

Advanced Composites Research Group (ACRG), Queen's University Belfast

www.qub.ac.uk/sites/acrg/

BACKGROUND OVERVIEW & MOTIVATION

• Background (Free-edge effect):

Potential singular localized three-dimensional stress fields arise in the vicinity of interfaces between dissimilar laminate layers.

- Motivation:
- Although free-edge effect has been under scientific investigation for more than 5 decades, it remains an open problem to predict the stress concentrations and associated delamination accurately.
- 2. Numerous closed-form, semi-analytical, and numerical methods have been proposed, however, each have documented either limitations or are computationally expensive.

AIMS & OBJECTIVES

• To develop a method to obtain interfacial fracture parameters in a symmetric/hybrid stacked laminates.

 Utilising the above parameters to propose a failure criterion based on Finite Fracture Mechanics (FFM).

INTERFACIAL STRAIN ENERGY RELEASE RATE

 Preliminary dimensional analysis for a general two-ply bi-material system.

 $\begin{aligned} \mathcal{G} &= \mathcal{G} \begin{pmatrix} (\sigma_{\infty}), (a, b, location), (\phi), (h, H, W, L), \\ (E_1^s, E_2^s, G_{12}^s, \upsilon_{12}^s, \upsilon_{23}^s), (E_1^m, E_2^m, G_{12}^m, \upsilon_{12}^m, \upsilon_{23}^m) \end{pmatrix} \\ \mathcal{G}_i(\omega, \mu, \eta, \alpha, \beta, \phi) &= \frac{\sigma_{\infty}^{2h}}{E'} \psi_i^2(\omega, \mu, \eta, \alpha, \beta, \phi) \quad i \in \{x, y, z\} \end{aligned}$

Where ψ_i is non-dimensional correction factor,

 $\omega = \Im_m / \Im^*$ — normalised material $\mu = \Im_s / \Im^*$ parameters (*traces* [2]) reference value (average 3D \mathfrak{J}^* *trace* of CFRP considered) $E' = \Im_m . \omega / \mu \longleftarrow$ equivalent modulus C_{xy} 0 0 C_{zy} 0 $\begin{bmatrix} \mathcal{L}_{yx} \\ 0 \end{bmatrix}$ *C* = 2*C_{ss}* 0 $\eta = H/h$ Φ 0

www.qub.ac.uk/sites/acrg

[2] Tsai SW, Melo JDD. An invariant-based theory of composites. Compos Sci Technol 2014;100:237–43. https://doi.org/10.1016/j.compscitech.2014.06.017.

MODE-MIXITY ALONG CRACK FRONT

For a given material (ω, μ) and thickness η parameter, mode-mixity ratios are dependent on polar angle ϕ & crack profile (α, β):

5

)UEEN'S

BELFAST

VERSITY

Influence of crack parameters lpha and eta on norm. ERR

• ERR distribution is computed using 3D-VCCT (Abaqus in-built) for metal/90.

FRACTURE CRITERION SPECTRUM

[3] Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 2002;21:61–72.

INCREMENTAL ENERGY RELEASE RATE (IERR)

• Griffth's ERR: differential form

٠

$$\overline{\mathcal{G}}_{i} = \frac{1}{\Delta a} \int_{0}^{\Delta a} \mathcal{G}_{i} \, da = \frac{\sigma_{\infty}^{2} h}{E'} \frac{1}{A} \iint_{0}^{A} \psi_{i}^{2} da = \frac{\sigma_{\infty}^{2} h}{E'} \Lambda_{i} \qquad \Lambda \longrightarrow \text{ norm. IERR}$$

 \overline{G}_i is IERR for mode *i*, gives energy rate required to nucleate a crack of area A(area of semi-ellipse).

8

INTERLAMINAR STRESSES COMPUTATION

Interlaminar stresses computed using Abaqus for a general twoply bi-material system :

Dimensional analysis $\boldsymbol{\sigma} = \boldsymbol{\sigma} \begin{pmatrix} (\sigma_{\infty}), (y), (H, h), \\ (E_1^s, E_2^s, G_{12}^s, \upsilon_{12}^s, \upsilon_{23}^s), (E_1^m, E_2^m, G_{12}^m, \upsilon_{12}^m, \upsilon_{23}^m) \end{pmatrix}$

$$\sigma_{iz}(\omega,\mu,\eta,y') = \sigma_{\infty} \chi_{iz}(\omega,\mu,\eta,y') \quad i \in \{x,y,z\}$$

where χ_{iz} is non-dimensional stress functions.

Resin layer modelling: 2% of *H* as thickness (revealed parametric study on angle-ply laminate in comparison with literature).

FINITE FRACTURE MECHANICS (FFM) CRITERION

FFM coupled criterion [4]: $f(\sigma_{ij}(x_i), \sigma_c) \ge 1$ \land $h(\mathcal{G}_g(\Delta a), \mathcal{G}_c) \ge 1$

BELFAST

10

Description

3 variables: σ_{∞} , a, b

 $X_z, S_y, S_x;$ \mathcal{G}_c ,

 $\chi_{zz}, \chi_{zy}, \chi_{zx};$

 $\psi_I, \psi_{II}, \psi_{III}$

[4] Leguillon D. Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 2002;21:61–72.

HYPOTHESIS: HOMOTHETIC CRACK EXTENSION

• Homothetic crack extension: aspect ratio of crack constant

• 3D-interface semi-elliptical edge crack leads to optimization problem:

Obj function:

$$F_{f} = \min_{F,\Delta A} \begin{cases} F \mid f(\sigma_{ij}(x_{i}), S_{x}, S_{y}, X_{z}) \geq 1 \quad \forall \quad x_{i} \in \Omega_{c} \\ \wedge \quad h(\mathcal{G}_{g}(\Delta A), \mathcal{G}_{Ic}, \mathcal{G}_{IIc}, \mathcal{G}_{IIIc}) \geq 1 \end{cases} \end{cases}$$

Constraints:

 $\sigma_{\infty}(\sigma_{ij}(x_i), S_x, S_y, X_z) = \sigma_{\infty}(\mathcal{G}_g(\Delta A), \mathcal{G}_{Ic}, \mathcal{G}_{IIc}, \mathcal{G}_{IIIc})$

NORM. IERR OF HERCULES AS1/3501-6

INTERLAMINAR STRESSES OF HERCULES AS1/3501-6

 Weak singularity is observed at the free edge in interlaminar shear stress.

QUEEN'S

BELFAST

UNIVERSITY

FAILURE PREDICTION of AS1/3501-6

Validation of FFM criterion of AS1/3501-6

- FFM predicts precisely the delamination onset evolution within the error bars of tests [6] for each 'n'.
- FFM predicts normalised crack onset width $0.5 \le \Delta b_f / h \le 2$ close to 1 which is in accordance to [7].

15

www.qub.ac.uk/sites/acrg

QUEEN'S UNIVERSIT BELFAST

SUMMARY

- Conclusions
 - A method of calculating ERR distribution of semi-elliptical cracks was developed by using 3D-VCCT.
 - Mode-mixity was studied and it was observed that it not only is influenced by polar angle along the crack front but crack profile as well.
 - Similar approach was performed for interlaminar stresses to develop a FFM criterion.
 - Validation of FFM criterion with experimental values indicated very close agreement.

- Future Work
 - Extend current FFM criterion to fatigue scenario (Experimental campaign).

THANK YOU

Mohammad Burhan

PhD Researcher

School of Mechanical & Aerospace Engineering

UK

mburhan01@qub.ac.uk

Acknowledgements

This study was conducted as part of the Belfast Maritime Consortium UKRI Strength in Places project, 'Decarbonisation of Maritime Transportation: A return to Commercial Sailing' led by Artemis Technologies, Project no. 107138.

RESEAR