\times

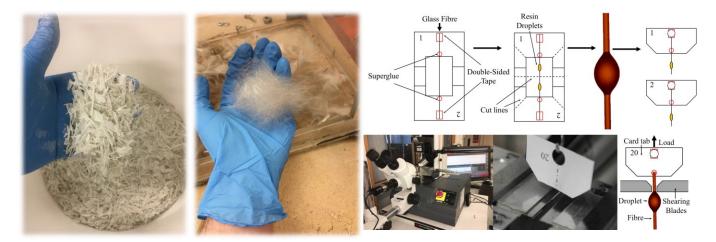
Effect of Thermal Degradation of Glass Fibre Sizing on Interfacial Adhesion

David Bryce, James Thomason, and Liu Yang

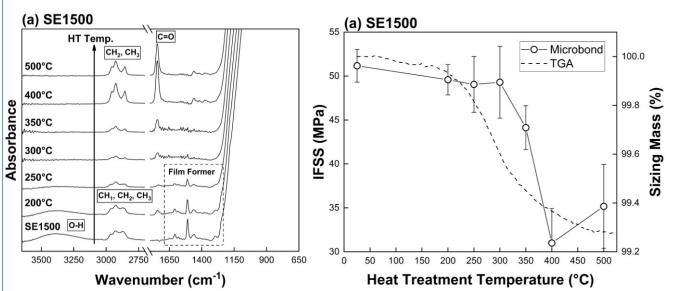
22nd International Conference on Composite Materials (ICCM23) 30th July – 4th August

Background

- Global wind turbine waste > 43 million tonnes by 2050.
- Conventional waste disposal methods already banned in several European countries. Solutions needed urgently!
- Fibre properties reduced during composite recycling.
- Solutions need understanding of sizing decomposition


\times Т Т ≻ CULTY 0 П Ζ G Ζ Π Ш ת Z

Overview


• Characterisation relationship between elevated temperature processing and interfacial adhesion

• Methods:

- Glass fibres thermally conditioned at 200–500°C and reclaimed from wind blade using fluidised bed.
- Sizing decomposition by thermogravimetric analysis.
- Fibre surface analysis using FTIR.
- Interfacial adhesion measured using microbond test.

Results:

Conclusions:

Available at the poster session (Poster P091)

Effect of Thermal Degradation of Glass Fibre Sizing on Interfacial Adhesion

David Bryce, James Thomason, and Liu Yang Advanced Composites Group, University of Strathclyde

Background

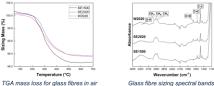
• Global wind turbine waste > 43 million tonnes by 2050. · Conventional waste disposal methods already banned in several European countries. Solutions needed urgently! Fibre properties reduced during composite recycling. · Solutions need understanding of sizing decomposition. Characterisation of relationship between elevated temperature processing and interfacial adhesion.

Glass fibres thermally conditioned at 200–500°C.

· Fibre surface analysis using FTIR.

· Fibres reclaimed from wind blade using fluidised bed.

Sizing decomposition by thermogravimetric analysis.


Interfacial adhesion measured using microbond test.

Epoxy resin film former decreased with increasing

Glass fibre sizing decomposition Fibre surface analysis · Hydroxyl group intensity indicative of lubricant removed

 Sizing decomposition onset at 200°C • Majority of mass loss in 200-400°C region. Further mass loss above 400°C attributable to coupling agent degradation.

Wavenumber (cm⁻¹)

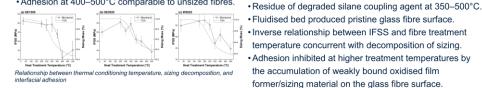
treatment temperature and was removed completely following treatment at 300-350°C. Carbonyl growth indicates oxidised sizing material. (b) \$E2020

	In tenp. Ere IV	HT Terry. Crd
	SAPIC BEACH	664°C
- Maland	arc Allen	a are Aller
- man	369°C	g sere hand
	and the second s	ğ 389°C
Finfunar	250YC A Min form	a sarc
Ke, Ob, Ob)	2000 Minut	2000 Minut
e nul	882008 BH BR. (8, (9)	W2820 BH ER, CH, CH,
2280 2080 2758 1658 1400 1190 600 658	3500 3290 3080 2756 1650 1400 1150 980 656	3808 3290 3080 2780 9680 1408 1190 980
Wavenumber (cm ⁻¹)	Wavenumber (cm ⁻¹)	Wavenumber (cm ⁻¹)

· Sizing mass loss in in the 200-400°C range attributable

FTIR spectra of thermally conditioned glass fibre surfaces

to degradation of an epoxy film former.


Conclusions

Methods

by 250-300°C.

Interfacial adhesion

• IFSS stable up to treatment temperature of 300°C Reduced adhesion onset at 350°C. Adhesion at 400–500°C comparable to unsized fibres

Future Work (ProGrESS 2022-25)

•£2 million three-year scheme to build pilot recycling facility and deliver a circular model for wind turbine blades.

· Continuous high-throughput reclamation of glass fibres from end-of-life composite materials. • Reduce the manufacturing carbon footprint of GFRP materials by replacing virgin glass fibre with recycled glass fibre.

· Product development of composites incorporating recycled materials.

· Developing a sustainable solution to support a circular economy for end-of-life GFRP material as a green alternative to the current landfilling approach.

 \times

Future Work (ProGrESS 2022–25)

- £2 million three-year scheme to build pilot recycling facility and deliver a circular model for wind turbine blades.
- Continuous high-throughput reclamation of glass fibres from end-of-life composite materials
- Product development of composites incorporating recycled materials.
- Developing a sustainable solution to support a circular economy for end-of-life
 GFRP material as a green alternative to the current landfilling approach.

