

 École polytechnique fédérale de Lausanne

Translaminar fracture toughness characterization in fiber-hybrid thin-ply composites: effect of hybridization

ICCM 23, Belfast

<u>G. Broggi¹</u>, A. Argyropoulos², J. Cugnoni³, V. Michaud¹

¹Laboratory for Processing of Advanced Composites (LPAC), EPFL, Switzerland ²North Thin Ply Technology SARL, Renens, Switzerland ³Institute of mechanical design and material technologies, HEIG-VD / HES-SO, Switzerland

Contact: guillaume.broggi@epfl.ch

02.08.2023

EPFL Context : thin-ply prepreg

Onset and strength, T800 carbon fiber, QI

Adapted from Cugnoni et al. - ECCM18

EPFL Data reduction: J-integral

EPFL Hybridization mechanisms

	E [GPa]	σ _{ult} [MPa]	ε _{ult} [%]
HR40	375	4410	1.1
34-700	234	4830	2.0

1. Fragmentation and pull-out

2. Extensive delamination and secondary damage

3. Crack bridging

EPFL **Material selection**

Laminate thickness

EPFL Translaminar fracture – Interlayer hybrids

- Architecture effects
- High scattering
- Deviations from linear scaling: hybrid effect?

4 samples per configuration

EPFL **Hybrid effect quantification**

Low strain volume fraction γ

- Need to decouple the two effects .
- Hybrid effect = result different from expectations ٠
- Comparison against a Rule of Mixture (RoM)

EPFL Translaminar fracture – Interlayer hybrids

EPFL Deviation from ROM –Secondary damage

EPFL Translaminar fracture – Interyarn and intrayarn hybrids

- Mild deviation from linear scaling
- Architecture effects

11

EPFL Translaminar fracture – Interyarn and intrayarn hybrids

EPFL Translaminar fracture – Interyarn and intrayarn hybrids

Mechanism : low-strain tow bridging

EPFL Energy vs. pull-out length

Maximal length [µm]

• Pull-out length drives the ERR

EPFL A dual-scale modelling approach

Identification of a traction-separation law

Output: energy dissipated by every bundle

EPFL Microscale result

Bundle pull-out length [mm]

Bundle pull-out length [mm]

- Hybridization effect
- Architecture effects
- Long bundles are much more dissipative

EPFL Microscale result

 $\tau_{max} = 20 MPa$

EPFL Macroscale results

- Pull-out drives translaminar fracture toughness
- As ply-thickness decreases, pull-out length decreases
- Fiber-hybridization modulates pull-out length and density
- Translaminar toughness can be predicted according to pull-out distribution

EPFL Acknowledgements

This research is performed within the framework of the HyFiSyn project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765881.

Laboratory for Processing of Advanced Composites

Additional funding Prof. J. Botsis Secondments Prof. Y. Swolfs Prof. M. Wisnom Special thanks A. Argyropoulos S. AhmadvashAghbash A. Aydemir 20

Thank you for your attention!

Questions?

contact: guillaume.broggi@epfl.ch