

FAILURE CHARACTERIZATION OF ADHESIVELY BONDED COMPOSITE JOINTS USING A MODIFIED ARCAN FIXTURE

David J. Brearley¹, Tobias Laux¹, M'hamed Lakrimi², Janice M. Dulieu-Barton¹, Ole T. Thomsen¹

¹Bristol Composites Institute, University of Bristol, Queen's Building, University Walk, Bristol, BS8 1TR, UK

²Siemens Plc, Healthcare Sector, MR Magnet Technology, Eynsham, Oxfordshire, OX29 4BP, UK

bristol.ac.uk/composites

Engineering and Physical Sciences Research Council

SIEMENS Healthineers

Background

 MRI machine, used for non-invasive medical imaging, consisting of a bonded magnet capable of >3 Tesla

 数

Establishing interface strength

- Interface identified as a region with a large complex stress state and potential location of failure
- Strength, stiffness and toughness properties needed for analysis can be found through experimental testing
- Modified Arcan fixture (MAF) used in quasi-static loading
- Shear stress applied across specimen interface to examine shear strength

Experimental Parameters

• Loaded in displacement control @ 0.2mm/min

Hardware	Stereo DIC
Camera	Flir Blackfly S USB3
Sensor	12 bit, 2448x2048
Lens	Tokina atx-i 100mm F2.8 FF MACRO PLUS
SOD / stereo angle	~350mm 25°
Magnification	0.4
Pixel resolution / FOV	8.35µm/pixel) 20.4x17.1mm
Frame rate	1Hz

Analysis

Analysis parameters	Stereo DIC
Software	Match ID
Subset size	71 px
Step Size	35 px
Correlation Criterion	ZNSDD
Shape function	Affine
Spatial pre-filtering	Gaussian
Strain Tensor	Logarithmic
Strain window	5
Noise floor (SD of vertical displacement V)	0.00045

Relatively large subsets for noise reduction

X

Rigid body motion compensation and rotation transformation

Manufactured Steel-Steel Specimen

Each specimen:

- 1. 2x Bright mild steel plates (10x30x60mm)
- 2. Bonding faces (10x30mm) finished with sand blaster
- 3. Plate 1 clamped on an angle
- Plate 2's bonding face evenly coated with Araldite MY750 / HY5922 hardener
- 5. Plate 2 placed on plate 1, aligning the faces with the tool and using gravity as an even clamping force

Strain calculation from MatchID algorithm

Virtual Bi-axial Extensometers

 $\varepsilon_{J} = \delta y / t_{J}$ $\gamma_{J} = 2 \varepsilon_{J}$

- δ_v = Vertical extension of vector
- ϵ_J = Shear strain in adhesive joint
- t_J = Adhesive joint thickness
- γ_J = Engineering shear strain in adhesive joint

Experimental Results

Harris JA, Adams RD. An Assessment of the Impact Performance of Bonded Joints for Use in High Energy Absorbing Structures *Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science.* **1985**;199(2):121-131.

Rey JM et. al. Epoxy resin developments for large superconducting magnets impregnation, *Cryogenics.* **1998**;38(1):19-23

Stereo DIC results from magnet sample

Shear Angle Extrapolation

- Compliance in the adherends means "biaxial virtual extensometer" method for measuring shear strain can not be used
- Relatively large subsets makes it impossible to resolve strain within a narrow region of interest e.g. adhesive joint ~120μm
- Method is needed to overcome spatial resolution issue: predict the strain experienced by the adhesive based on the measured strain in the adherends

Physical Sciences

Research Council

Healthineers

MRI magnet specimens

Conclusions

- Steel-Steel specimens used to examine epoxy shear modulus and strength with simplified geometry (proof of concept of measurement methodology using MAF)
- MAF rig in shear configuration produces a near uniform shear strain distribution at interface
- Methodology developed to derive shear strain in interface/adhesive of composite/coil specimen overcoming limitations of spatial resolution
- Measured (apparent) shear modulus of 2.5 GPa
- Measured shear strength (average shear stress at failure) of 5.75 MPa

Further work

- Use different loading hole pairs in MAF to induce bi-axial stress states and generate failure envelope
- Modelling of interface fracture process using CZM model with both contemporary and control material cases using experimental values
- Repeat tests at cryogenic temperatures to generate failure envelope with in-situ conditions – test setup including cryostat of conducting insitu measurements at cryogenic temperatures being developed

Thank you for listening

david.brearley@bristol.ac.uk

bristol.ac.uk/composites