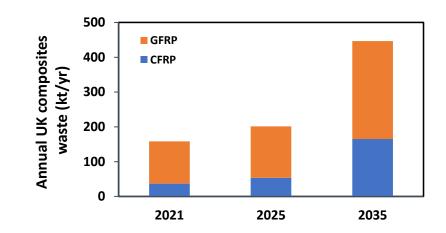


The case for solvolysis in composite recycling Dr Callum Branfoot

ICCM23, Belfast



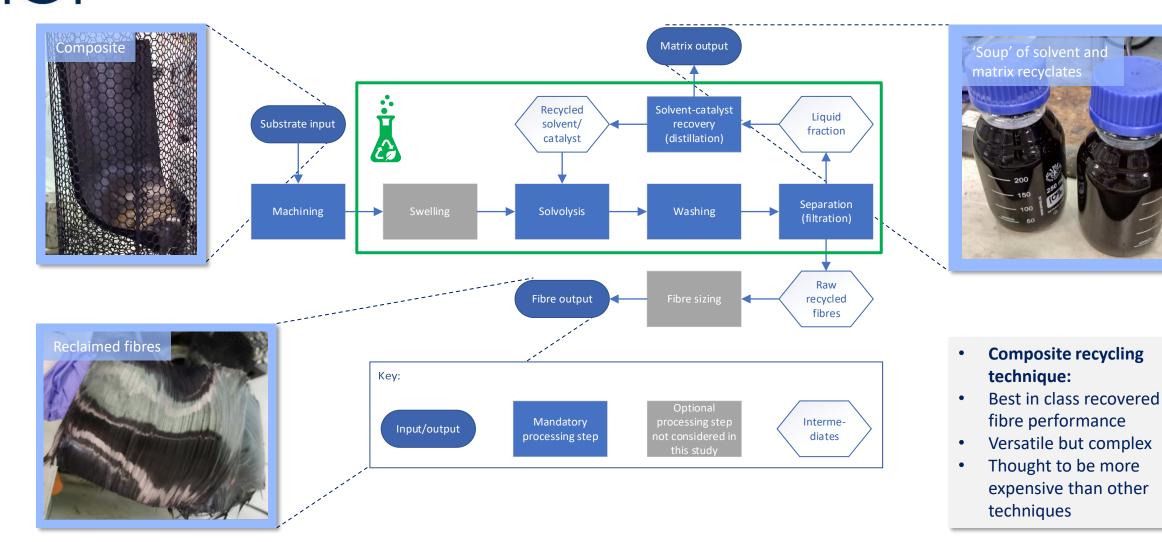
Around **110 000 tonne**s of FRP is produced in the **UK/year**

On average, only 15% of this is recycled at EOL

For composites to remain relevant in a **net zero future**, a lot **more** of it **needs to be recycled**

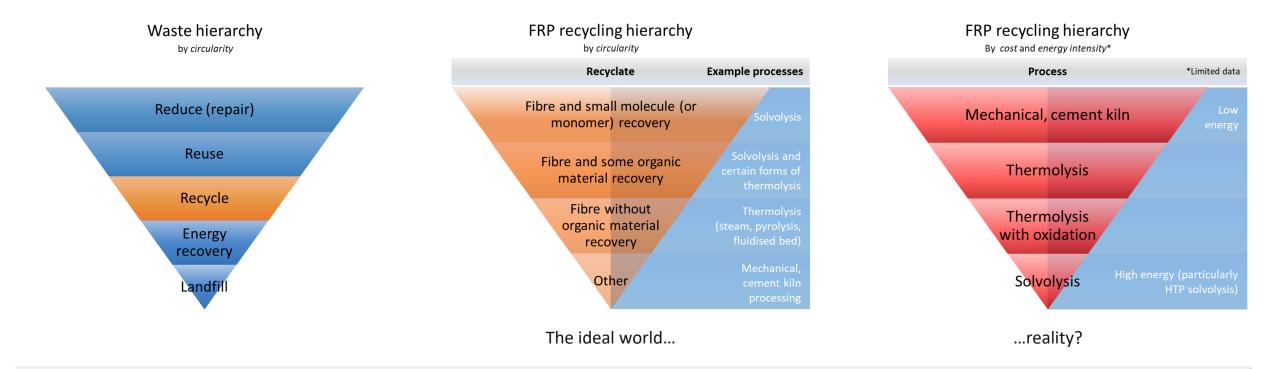
Due to value, lifecycle, and stability differences, **CFRP** and **GFRP** composites require **different treatment methods**

		Glass fibre composites	Carbon fibre composites
	Landfill		
	EfW		
1	Cement kiln		
	Mechanical		
	Thermo- oxidation		
	Pyrolysis		
	Solvolysis		


Relative CO₂ footprints of composite

recycling technologies

*information and figures kindly provided by the NCC Sustainability team, including the work of K. Pender, T. Young, and V. Summers



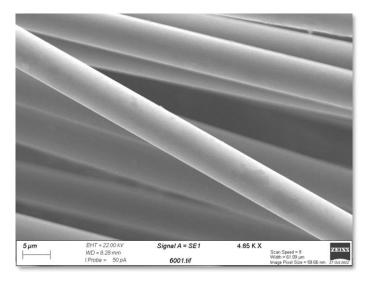
What is solvolysis?

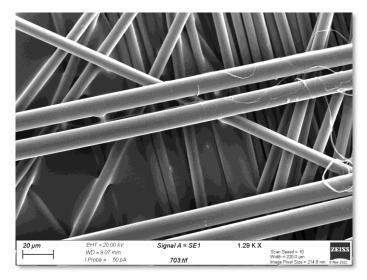
- Solvolysis has three key advantages: max. recyclate value (near pristine fibre performance + matrix recyclates), applicability to all fibre types (mild conditions), and tunability
- The major disadvantages are the high cost (energy + financial), so high environmental impact, complexity, and low TRL
- Solvolysis is most suitable for three composite scenarios:
- (1) High performance fibres (i.e. carbon and aramid) where maintaining this for 2nd life is critical, (2) composites with valuable or specially degradable polymers, and (3) any composites mandated to be recycled into fibres and matrix

Commercially relevant solvolysis

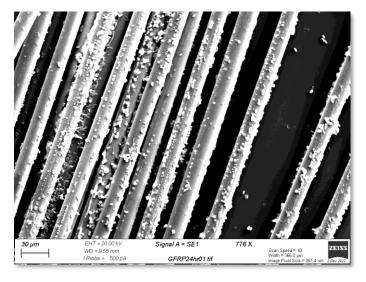
CFRP (filament wound) **Hydrogen tank** (pressure vessel) Bisphenol A–derived **epoxy** by Huntsman

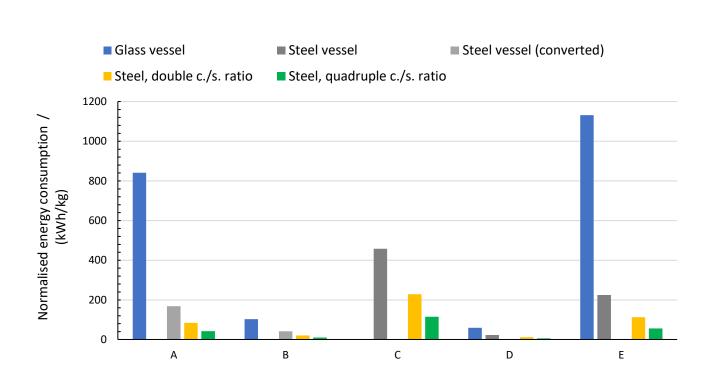
AFRP (Kevlar-49)/CFRP hybrid (infusion) Racing kayak Bisphenol A-derived epoxy with a *design* for degradation hardener, Recyclamine by Aditya Birla



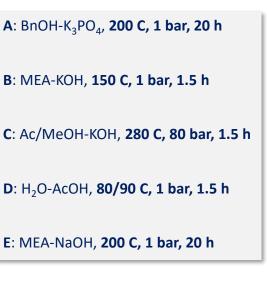


Results: fibres and degradation%


- In most cases, TGA indicates >95 wt% of organics* are removed by solvolysis/washing
- EOL wind blade, best case ~85 wt% organic removal—affected by balsa and unidentified organic material?


*organics = mostly matrix polymer, also includes other materials that can thermally decompose on TGA: sizing and core materials (balsa)

callum.branfoot@nccuk.com ICCM23



Results: energy measurement

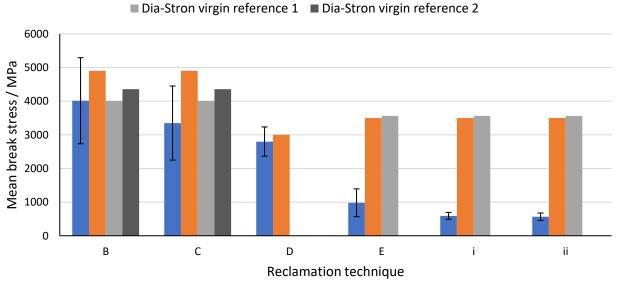
- Composite/solvent (c./s.) ratio not optimised
- Previous results indicate higher ratios can give better degradation yield
- Yellow and green bars indicate estimates with optimised c./s.
- Bigger reactors can be much more energy efficient (e.g. 6-fold...)

callum.branfoot@nccuk.com ICCM23

Results: single fibre tensile testing

Key

- B–E correspond to the previous solvolysis conditions
- i = steam pressolysis on the same EOL blade substrate as E
- ii = pyrolysis on the same material


Fibre diameter

E = 18.7 μm, i = 21.0 μm, ii = 18.7 μm

Key points

- Comparing B/C with the average of the two reference values for virgin T700:
- B (low temp solv.) = 96% of virgin strength
- C rCF strength is 20% poorer, therefore lower temp. preferred?
- All **rGF** was very **low performance**
- Consistent stiffness and strain data

There is more to fibre quality than strength (and other mechanical properties)...

...fibre format

- Continuous filaments
- Woven sections
- Short fibres
- Currently little interest in 'long' but discontinuous

And surface properties

- Surface energy
- Sizing?

- Validated four previously reported solvolyses and one new process on one of three different commercially relevant FRP substrates—clean fibres that could be re-purposed into 2nd life composites were isolated
- The real EOL wind blade waste was most challenging—unknown materials make things difficult
 - Crucial to match the chemistry to the material
- Single fibre tensile testing data revealed that mean rCF strength was ~96% of vCF
 - **rAF (K-49)** was similarly high performing*
 - **rGF strength was very poor** but the solvolysed rGF's mean strength of 28% (of virgin) was better than those fibres reclaimed from steam pressolysis (17%) and pyrolysis (16%)
 - Much of this rGF damage is attributed to service life and shredding
- Reactor design and size has a big influence on energy efficiency data—it's difficult to extrapolate up to a pilot scale to compare with other reclamation techniques
- Like-for-like comparison of different conditions indicates that newer, low temperature solvolyses can be 10x more energy efficient than supercritical solvolyses that have been used in LCA comparisons
- Initial testing of the matrix recyclates has been preformed but much more needs to be done...
- Solvolysis can be fairly straightforward when you know a lot about your substrate composite

callum.branfoot@nccuk.com

ICCM23

Where does solvolysis fit?

- Where high performance rCF or rAF is required
- Where the substrate composite is well identified
- Any next generation composite with design for degradation polymers
- As one part of the future composite recycling landscape

What next?

- Scale: with a 50 L pilot reactor, energy measurements should support meaningful LCA and TEA data
- Tough composites: aerospace dominates the market for high performance carbon, can we validate w/ tougheners?
- Matrix recyclates: there is value in matrix recyclates, but how much? Much more work to be done...
- **2nd life** composite **demonstrators**: prove the value in the circularity to drive investment to bigger scales...

- Prof Gary Leeke
- Dr Guozhan Jiang

Helene Folkvord

AARHUS UNIVERSITY

- Dr Vicky Summers
- Jazmin Agreda

