IN-SITU MIXING AND PRINTING OF CONTINUOUS CARBON FIBRE REINFORCED THERMOSET COMPOSITES

J. HARES | P. A. KELLY | M. A. BATTLEY | BICKERTON CACM, THE UNIVERSITY OF AUCKLAND

CONTENT

Advanced Composite Materials

Motivation and Background IMPETUS, STATE OF THE ART, SCOPE

Why Composite Printing?

Automation!

Composites are hard to make

Better parts!

Has anyone else done this?

Of course they have!

But there is a long way to go...

- Low material properties.
- Low volume fraction/no compaction.
- Thermoset printing is underdeveloped.

What will we do?

Gaps in the state of the art

- Thermoset printing is not in commercial use.
- *Very little* investigation into processing behaviour.
- Thermoset printing is underdeveloped.

Scope

'Processing-science based design'

- Resin characterisation.
- Fibre characterisation.
- Build a prototype

Resin Characterisation SOLID EPOXY-BASED PRINTING PROCESS CONCEPT

Centre for Advanced Composite Materials

Resin Characterisation EXPERIMENTS

Centre for Advanced Composite Materials

Slide 5

Tow Characteristics and Infiltration EXPERIMENTS

Tow Characteristics and Infiltration FRICTION MEASUREMENT SETUP

- Need to measure coefficient of friction between iris and fibre material.
- Pull tensioned fibre over drum made from iris material.
 - 4340 steel, 2-4Ra isotropic roughness.
- Capstan Equation used to calculate coefficient of friction.

$$\mu_{app} = \ln\left(\frac{T_2}{T_1}\right)\frac{1}{\theta}$$

- μ_{app} Applied friction coefficient.
- $T_{1,2}$ Fibre tension on each side of drum.
- θ Wrap angle.

- Need to measure σ_c and V_f relationship for single fibre tows.
 - Must be able to vary opening area.
- Ability to characterise more complex behaviour.
- Solution: 'Iris' mechanism experiment.

Laser distance sensor

Iris opening

Fibre tow

Linear actuator

Printer Design OVERVIEW

Printer Design ZONE #1 – RESIN STORAGE, PUMPING, & MIXING

Printer Design ZONE #2 - DRIVE

Printer Design ZONE #3 - NOZZLE

Printer Prototype CURRENT STATUS

Printer Prototype CURRENT STATUS

Pumping Trial No.

Centre for Advanced Composite Materials

A novel concept for a continuous fibre 3D print head has been developed, which infiltrates a carbon fibre tow with a thermoset epoxy in-situ.

The print head has been designed from a series of in-depth material and process chartacterisation experiments, including:

- DSC and Rheometric studies on an epoxy, solid at room temperature.
- Fibre tow frictions, and radial compaction studies.
- Extension and testinng of the Siphon tow infiltration technique developed by the Leibniz-Institut für Verbundwerkstoffe, to small scale.

The prototype print head is currently being commissioned and debugging. The latest progress will be presented at ICCM23.

Acknowledgements

The first author acknowledges funding provided by the University of Auckland, through a UoA Doctoral Scholarship.