

TWENTY-THIRD INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS (ICCM23)

Christian Berggreen Aakash Moncy

Investigating the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens

(Full version – reduced version will be presented at the conference)

31 July – 4 August 2023

Contents

1. Introduction

- 2. Cruciform specimens and anisotropy
- 3. Biaxial cyclic tests using cruciform specimens
- 4. Growth of tunnelling cracks under strain control
- 5. Predicting crack density evolution
- 6. The future of cruciform specimens

DTU

7

Introduction

A MULTI-SCALE TESTING AND MODELLING FRAMEWORK

DTU Introduction Overview of the damage mechanisms

Fatigue in composite laminates is quite complex, primarily due to the damage process being multi-scale in nature.

Damage mechanisms is highly dependent on the layup sequence.

The damage progression of a typical multi-directional composite laminates includes -

Introduction Overview of the damage mechanisms

K.L Reifsneider. "Fatigue of composite materials". In: vol. 4. Elsevier, 1991, pp. 1– 519. ISBN: 978-0-444-70507-5.

The different damage modes are often interacting with each other.

Damage behaviour in composite laminates is highly non-linearly, making prediction of damage not a simple task.

Fatigue damage in non-crimp fabric composites are even more complicated due to the use of backing bundles.

 $[0/60/0/-60]_S$

Not all cracks appear at the same time.

Damage is progressive in nature.

Crack fronts can be interacting or noninteracting.

The **global** average crack density is calculating using -

$$o = \frac{\sum_{i=1}^{n} L_i}{A}$$

J.A. Glud et al. "Automated counting of off-axis tunnelling cracks using digital image processing". In: Composites Science and Technology 125 (2016), pp. 80-89.

Introduction Predicting tunneling cracks **MICRO** SCALE Tunnelling cracks CALCULATING ERR Cracked ply BASED ON LOCAL CRACK SPACING × x1 MESO Sublaminate Symmetry plane SCALE Z_{i} CALIBRATION OF THE DAMAGE MODEL DAMAGE INITIATION **CRITERION** Cracks being shared by * NR - Neighbouring RVE neighbouring RVE's Symmetry plane A STRUCTURE DISCRETISED INTO MASTER ELEMENTS STRUCTURAL **SCALE** х

DTU Introduction Predicting tunneling cracks

2

Cruciform specimens and anisotropy

Cruciform specimens and anisotropy Influence of material anisotropy

Stress state under any loading condition

$$\sigma_{ij_n} = k_1 \cdot \sigma_{ij_n}^1 + k_2 \cdot \sigma_{ij_n}^2$$

$$k_1 = \frac{-\varepsilon_{XX_c}^R \cdot \varepsilon_{YY_c}^2 + \varepsilon_{YY_c}^R \cdot \varepsilon_{XX_c}^2}{\varepsilon_{XX_c}^2 \cdot \varepsilon_{YY_c}^1 - \varepsilon_{YY_c}^2 \cdot \varepsilon_{XX_c}^1}$$
$$k_2 = \frac{\varepsilon_{XX_c}^R \cdot \varepsilon_{YY_c}^1 - \varepsilon_{YY_c}^R \cdot \varepsilon_{XX_c}^1}{\varepsilon_{XX_c}^2 \cdot \varepsilon_{YY_c}^1 - \varepsilon_{YY_c}^2 \cdot \varepsilon_{XX_c}^1}$$

Cruciform specimens and anisotropy Influence of material anisotropy

Performance of the best and worst cruciform geometries, with changing anisotropy level.

Cruciform specimens and anisotropy Conclusions

- A single cruciform specimen cannot be used for all biaxial load ratios or layup configurations.
- The anisotropy of composite materials is seen as one of the biggest challenges in standardizing the cruciform specimen.
- Cruciform specimens with a rhombus gauge zone shape performed better than a circular or a squared gauge zone shape.
- Future work should involve optimization of the specimen for avoiding the usage of different specimen designs for different biaxial load ratio.

3

Biaxial cyclic tests using cruciform specimens

Biaxial cyclic tests using cruciform specimens Active strain control method

$$\begin{cases} \varepsilon_{xx} \\ \varepsilon_{yy} \end{cases} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{cases} P_x \\ P_y \end{cases}$$

Biaxial cyclic tests using cruciform specimens

Comparison between the active and passive strain control methods

Biaxial cyclic tests using cruciform specimens

Comparison between the active and passive strain control methods

Active	Passive
• T1: $\{\varepsilon\}_{cmd}^{p} = \{2000\ 2000\}^{T}\mu\varepsilon$ • T2: $\{\varepsilon\}_{cmd}^{p} = \{3000\ 3000\}^{T}\mu\varepsilon$ • T5: $\{\varepsilon\}_{cmd}^{p} = \{4000\ 4000\}^{T}\mu\varepsilon$ • T6: $\{\varepsilon\}_{cmd}^{p} = \{4000\ -2584\}^{T}\mu\varepsilon$ • T8: $\{\varepsilon\}_{cmd}^{p} = \{4500\ -2907\}^{T}\mu\varepsilon$ • T9: $\{\varepsilon\}_{cmd}^{p} = \{5000\ -3230\}^{T}\mu\varepsilon$ • T3: $\{\varepsilon\}_{cmd}^{p} = \{3000\ 1500\}^{T}\mu\varepsilon$ • T4: $\{\varepsilon\}_{cmd}^{p} = \{3500\ 1750\}^{T}\mu\varepsilon$	$\begin{array}{c c} & \text{T1: } \{\varepsilon\}_{cmd}^{p} = \{2000\ 2000\}^{T}\mu\varepsilon\\ & \text{O} \text{T2: } \{\varepsilon\}_{cmd}^{p} = \{3000\ 3000\}^{T}\mu\varepsilon\\ & \text{O} \text{T5: } \{\varepsilon\}_{cmd}^{p} = \{4000\ 4000\}^{T}\mu\varepsilon\\ & \text{I} \text{T6: } \{\varepsilon\}_{cmd}^{p} = \{4000\ -2584\}^{T}\mu\varepsilon\\ & \text{I} \text{T8: } \{\varepsilon\}_{cmd}^{p} = \{4500\ -2907\}^{T}\mu\varepsilon\\ & \text{I} \text{T9: } \{\varepsilon\}_{cmd}^{p} = \{5000\ -3230\}^{T}\mu\varepsilon\\ & \text{V1: } \{\varepsilon\}_{cmd}^{p} = \{3000\ 1500\}^{T}\mu\varepsilon\\ & \text{V1: } \{\varepsilon\}_{cmd}^{p} = \{3500\ 1750\}^{T}\mu\varepsilon\end{array}$
$\bullet \text{T7:} \ \{\varepsilon\}_{cmd}^{p} = \{4000 \ 2000\}^T \mu \varepsilon$	$\diamond \text{T7: } \{\varepsilon\}_{cmd}^{p} = \{4000 \ 2000\}^T \mu \varepsilon$

- γ is the ratio of average $\{\varepsilon\}_{fdbk}^{k}$ and $\{\varepsilon\}_{cmd}^{k}$
- Ideal value of γ should be 1.
- CoV is the coefficient of variance in $\{\varepsilon\}_{fdbk}^k$.
- k = p or v depending on whether the peak of the valley strain of the sinusoidal loading is evaluated.

Biaxial cyclic tests using cruciform specimens Conclusions

- The cascade architecture (Active strain-control), was found to perform better than the conditional algorithm (passive strain-control).
- The active strain-control can have difficulties in maintaining the desired strain state under very large stiffness degradation.
- It risks system instability due to temporary loss of track of the point markers.
- A hybrid active-passive control method is proposed as a future work that provides the accuracy of the cascade architecture and the flexibility of recalculating the coupling matrix through the conditional algorithm.

4

Growth of tunnelling cracks under strain-control

Growth of tunnelling cracks under strain-control Multiplication of tunneling cracks

Growth of non-interacting cracks under strain-control

$$G_{ss} = \boxed{\frac{1}{2t_k} \int_0^{t_k} \sigma_{220}^k(z) \delta_2^{k0}(z) dz} + \boxed{\frac{1}{2t_k} \int_0^{t_k} \tau_{120}^k(z) \delta_1^{k0}(z) dz}$$

$$G_{II}$$

$$G_{eq} = G_I \text{ for MM} \leq \text{MM}^* \qquad \text{MM} = \frac{G_{II}}{G_I + G_{II}}$$

$$G_{eq} = (\sqrt{1 - \text{MM}} + \sqrt{\text{MM}})^2 (G_I + G_{II}) \text{ for MM} \geq \text{MM}^*$$

J. Glud, P. Carraro, M. Quaresimin, J. Dulieu-Barton, O. Thomsen and L. Overgaard, *A damage based model for mixed-mode crack propagation in composite laminates*, Composites Part A, vol. 107, pp. 421-431, 2018

Growth of tunnelling cracks under strain-control Growth of non-interacting cracks

Growth of interacting cracks under strain-control Growth of interacting cracks

Growth of interacting cracks under strain-control Growth of interacting cracks

 G_I and G_{II} in the thick 90° ply of $[0/90/0/-90]_S$ under pure uniaxial and shear strains.

Growth of tunnelling cracks under strain-control Tunnelling cracks in cruciform specimens

Growth of tunnelling cracks under strain-control Tunnelling cracks in cruciform specimens

$\mathbf{BR} = \frac{\boldsymbol{\varepsilon}_{yy}}{\boldsymbol{\varepsilon}_{xx}}$	ε ^p _{xx} (με)	ε ^p (με)
-0.646	4000	-2584

Growth of tunnelling cracks under strain-control Conclusions

- Cyclic tests at a single strain level can produce a Paris-Erdogan type of expression for crack front growth rate.
- Cycle tests at a single force level is still needed to characterize the variation associated with the crack front growth rate.
- Complicated cracking scenarios can potentially be reduced down to the simple cracking scenario where a crack is growing in between two bounding longer cracks.
- No effect of the crack front growth rate was found when collinear crack fronts are heading towards each other.
- The growth rate reduce only after non-collinear cracks cross-over each other.

5

Predicting crack density evolution

Predicting crack density evolution

Basic model framework

J.A. Glud et al. A stochastic multipxial fatigue model for off-are cracking in FRP laminates. In: International lifetimation and the statistic for (2017), pp. 576–590

$$\Delta \quad \varepsilon_{xx} = 2500\mu\varepsilon \text{ BR} = 0.5$$

$$\circ \quad \varepsilon_{xx} = 3000\mu\varepsilon \text{ BR} = 0.5$$

$$\circ \quad \varepsilon_{xx} = 3500\mu\varepsilon \text{ BR} = 0.5$$

$$\Delta \quad \varepsilon_{xx} = 3000\mu\varepsilon \text{ BR} = -0.646$$

$$\circ \quad \varepsilon_{xx} = 4000\mu\varepsilon \text{ BR} = -0.646$$

$$\circ \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$\bullet \quad \varepsilon_{xx} = 5000\mu\varepsilon \text{ BR} = -0.646$$

$$LMPS = \frac{1}{2} \left[\sigma_{rr} + \sigma_{zz} + \sqrt{\sigma_{rr}^2 + 4\sigma_{rz}^2 - 2\sigma_{rr}\sigma_{zz} + \sigma_{zz}^2} \right]$$

P.A. Carraro and M. Quaresimin. A damage based model for crack initiation in unidirectional composites under multiaxial cyclic loading. In: Composites Science and Technology 99 (2014), pp. 154–163

5 Predicting crack density evolution

J.A. Glud et al. A stochastic multiaxial fatigue model for off-axis cracking in FRP laminates. In: International Journal of Fatigue 103.- (2017), pp. 576–590

Investighting the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens

Predicting crack density evolution Element discretisation

Non-interacting crack elements (NICE)

Interacting crack elements (ICE)

Copy window *left*

Main RVE window

Copy window *right*

Predicting crack density evolution Stochastics

CGR at a certain steady state ERR follows a Weibull distribution

Life to crack initiation for the LHS and LMPS damage modes follows a Weibull distribution under a constant stress level

J.A. Glud et al. A stochastic multiaxial fatigue model for off-axis cracking in FRP laminates. In: International Journal of Fatigue 103.- (2017), pp. 576–590

Predicting crack density evolution Crack initiation module

Initiation of cracks depend on various factors –

- Stress state in the ply
- Local micro-structure
- Defects, etc.

The total probability of failure of the laminate also does not provide the location of the cracks explicitly.

60° ply of $[0/60/0/-60]_{S}$

-60° ply of $[0/60/0/-60]_{S}$

 60° ply of $[0/60/0/-60]_{S}$

- The model allows for crack initiation anywhere in the laminate as well crack coalescence.
- The ERR of crack fronts are explicitly calculated based on the local cracking conditions around the crack front.
- Cruciform specimens are used for calibrating the damage model to avoid using equivalent uniaxial laminates.
- The model predictions was found to be conservative at high crack density for the thin layer, but presented fairly good
 predictions for the thick layer.
- The model prediction was found to be heavily influence by the choice of parameter ϕ_p .
- The model accounts for the growth of damage outside the primary RVE, but as of now does not account for cracks entering into the main RVE from outside.

6

The future for cruciform specimens

Comparison of the **global crack density evolution**, such that the biaxial strain states of the two gauge zones are similar.

The **specimen layup** and the **load magnitude** of the equivalent uniaxial specimen are altered.

and an equivalent uniaxial specimen.

A.K. Bangaru et al. Approach for analysing off-axis tunnelling cracks in biaxially loaded laminates. In: Composite Structures 269 (2021), p. 113935

The future for cruciform specimens

Comparison with PhD1 and PhD3

STEADY STATE

CRACK GROWTH

 ψ, G_{ss}

H

31. July - 4. august 2023 **DTU Construct**

specimen.

ting the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens 50 Invest

FORCES

The future for cruciform specimens Conclusions

- The strain state from a sub-structural beam specimen was successfully recreated in the gauge zone of the cruciform specimen.
- The crack density evolution was found to be higher than the beam specimen.
- The stochastic nature associated with crack density evolution was not captured here.
- The crack front growth rate of non-interacting crack fronts in cruciform specimens were lower than the growth rate observed in the uniaxial specimen.
- Reproducing damage in different length scales is not a trivial task.
- Attention needs to be paid to design of specimen as recreation of the biaxial strain state even though is a necessary condition, but not a sufficient condition.
- Specimens should share identical boundary conditions.

Presentation is based on the following journal publications

- A. Moncy, O. Castro, C. Berggreen, H. Stang, Understanding the effect of anisotropy in composite materials on the performance of cruciform specimens, Composite Structures (2021)
- A. Moncy, J. Waldbjørn, C. Berggreen, *Biaxial strain control fatigue testing strategies for composite materials*, Experimental Mechanics (2021)
- A. Moncy, B.F. Sørensen, O. Castro, C. Berggreen, J.A. Glud, Propagation of tunnelling cracks in composite materials under strain and force-controlled cyclic loading, Journal of Composite Materials (2022)
- **A. Moncy**, O. Castro, J.A. Glud, C. Berggreen, O.T. Thomsen, J.M. Dulieu-Barton, *A tunnelling crack density evolution model for FRP laminates subjected to cyclic multi-axial strain-controlled loading*, (under review 2023).
- A. Quinlan, A. Moncy, A. Bangaru, O. Castro, H. Stang, C. Berggreen, L.P. Mikkelsen, A. Michel, B.F. Sørensen, Multi-scale experimental analysis of tunneling cracks in composite laminates under cyclic loading, (In Manuscript/Preparation - 2023).

Thank you for your attention