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Introduction
Overview of the damage mechanisms

W

Tunnelling cracks Tunnelling cracks in pure matrix <
Delamination (

Applied force

Fiber breakages Fibre matrix debonding

Fatigue in composite laminates is quite complex, primarily due to the damage process being multi-scale in nature.
Damage mechanisms is highly dependent on the layup sequence.

The damage progression of a typical multi-directional composite laminates includes -

Tunnelling cracks in off-axis layers Multiple delaminations
+ Saturation of tunneling cracks + Failure of the laminate
Isolated fibre breakages Fibre fractures
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= Overview of the damage mechanisms | | |
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Tunnelling cracks ﬁ
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J.A. Glud et al. “Automated counting of off-axis tunnelling cracks using digital
image processing”. In: Composites Science and Technology 125 (2016), pp. 80-89.
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= Predicting tunneling cracks
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Cruciform specimens and anisotropy

Arms
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Influence of material anisotropy
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DTU Cruciform specimens and anisotropy
Influence of material anisotropy
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Layup 1
[0/20/0/—20]¢

Layup 2
[0/40/0/—-40]5

Layup 3
[0/60/0/—60]¢

Layup 4
[0/80/0/—80]¢

Performance of the best and worst cruciform geometries, with changing anisotropy level.
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Cruciform specimens and anisotropy
Conclusions

W

A single cruciform specimen cannot be used for all biaxial load ratios or layup configurations.
= The anisotropy of composite materials is seen as one of the biggest challenges in standardizing the cruciform specimen.
» Cruciform specimens with a rhombus gauge zone shape performed better than a circular or a squared gauge zone shape.

= Future work should involve optimization of the specimen for avoiding the usage of different specimen designs for different
biaxial load ratio.
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Biaxial cyclic tests using cruciform specimens

31. July - 4. august 2023

DTU Construct

Inves‘ng the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens



DTU Biaxial cyclic tests using cruciform specimens
The biaxial testing machine
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Biaxial cyclic tests using cruciform specimens
Passive strain control method

W
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= Active strain control method
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Biaxial cyclic tests using cruciform specimens
Comparison between the active and passive strain control methods

W
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Biaxial cyclic tests using cruciform specimens
Comparison between the active and passive strain control methods

W
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Biaxial cyclic tests using cruciform specimens
Conclusions

W

» The cascade architecture (Active strain-control), was found to perform better than the conditional algorithm (passive
strain-control).

= The active strain-control can have difficulties in maintaining the desired strain state under very large stiffness degradation.
= |t risks system instability due to temporary loss of track of the point markers.

= A hybrid active-passive control method is proposed as a future work that provides the accuracy of the cascade
architecture and the flexibility of recalculating the coupling matrix through the conditional algorithm.
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Multiplication of tunneling cracks
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Growth of tunnelling cracks under strain-control

DTU
= Multiplication of tunneling cracks
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Growth of tunnelling cracks under strain-control

o
= Growth of non-interacting cracks
1071 . . . —
271072 3 -
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J. Glud, P. Carraro, M. Quaresimin, J. Dulieu-Barton, O. Thomsen and L. Overgaard, A damage based
model for mixed-mode crack propagation in composite laminates, Composites Part A, vol. 107, pp. 421-431, 2018
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Growth of non-interacting cracks
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DTU Growth of tunnelling cracks under strain-control

o
= Growth of interacting cracks
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I

Growth of interacting cracks
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try plane
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R
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G; and G;; in the thick 90° ply of [0/90/0/—90]s under pure uniaxial and shear strains.

31. July - 4. august 2023 DTU Construct

Inves‘ng the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens



=)
—
—

Growth of tunnelling cracks under strain-control
Tunnelling cracks in cruciform specimens

I
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= Tunnelling cracks in cruciform specimens
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Growth of tunnelling cracks under strain-control
Conclusions

I

= Cyclic tests at a single strain level can produce a Paris-Erdogan type of expression for crack front growth rate.
= Cycle tests at a single force level is still needed to characterize the variation associated with the crack front growth rate.

» Complicated cracking scenarios can potentially be reduced down to the simple cracking scenario where a crack is growing
in between two bounding longer cracks.

= No effect of the crack front growth rate was found when collinear crack fronts are heading towards each other.

= The growth rate reduce only after non-collinear cracks cross-over each other.
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DTu Predicting crack density evolution
= Basic model framework f
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= Element discretisation
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Ty Predicting crack density evolution
= Element discretisation o
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Predicting crack density evolution
Element discretisation

W

. Non-interacting crack elements (NICE)

Interacting crack elements (ICE)

Copy window left Main RVE window Copy window right
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Stochastics

W

J.A. Glud et al. A stochastic multiaxial fatigue model for off-axis cracking in FRP laminates. In: International Journal of Fatigue 103.- (2017), pp. 576-590
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01U =~ Predicting crack density evolution
= Crack Initiation module
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Predicting crack density evolution |
Crack initiation module
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01U = Predicting crack density evolution
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DTU Predicting crack density evolution
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DTU Predicting crack density evolution
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Predicting crack density evolution
Conclusions

W

» The model allows for crack initiation anywhere in the laminate as well crack coalescence.
» The ERR of crack fronts are explicitly calculated based on the local cracking conditions around the crack front.
= Cruciform specimens are used for calibrating the damage model to avoid using equivalent uniaxial laminates.

» The model predictions was found to be conservative at high crack density for the thin layer, but presented fairly good
predictions for the thick layer.

= The model prediction was found to be heavily influence by the choice of parameter ¢,,.

= The model accounts for the growth of damage outside the primary RVE, but as of now does not account for cracks entering
into the main RVE from outside.

31. July - 4. august 2023 DTU Construct Inves‘ng the Growth of Matrix Cracks under Biaxial Strain Control Fatigue using Cruciform Specimens



HE

The future for cruciform specimens
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DTU The future for cruciform specimens
Comparison with PhD1 and PhD3
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The future for cruciform specimens
Comparison with PhD1 and PhD3

i

Crack Density Evolution vs Cycles
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Comparison with PhD1 and PhD3

Comparison of the growth of non-interacting tunnelling
cracks from within the gauge zone of the cruciform specimen
and an equivalent uniaxial specimen.

That is, the average energy release rate and the mode-
mixity of the crack fronts from the equivalent uniaxial
specimen was similar to the cracks fronts from the cruciform
specimen.

The specimen layup and the load magnitude of the
equivalent uniaxial specimen are altered.

A.K. Bangaru et al. Approach for analysing off-axis tunnelling cracks in biaxially loaded
laminates. In: Composite Structures 269 (2021), p. 113935
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Comparison with PhD1 and PhD3
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Ty The future for cruciform specimens
= Conclusions

» The strain state from a sub-structural beam specimen was successfully recreated in the gauge zone of the cruciform
specimen.

» The crack density evolution was found to be higher than the beam specimen.
» The stochastic nature associated with crack density evolution was not captured here.

= The crack front growth rate of non-interacting crack fronts in cruciform specimens were lower than the growth rate
observed in the uniaxial specimen.

» Reproducing damage in different length scales is not a trivial task.

= Attention needs to be paid to design of specimen as recreation of the biaxial strain state even though is a necessary
condition, but not a sufficient condition.

= Specimens should share identical boundary conditions.
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Presentation is based on the following journal publications

A. Moncy, O. Castro, C. Berggreen, H. Stang, Understanding the effect of anisotropy in composite materials on the
performance of cruciform specimens, Composite Structures (2021)

= A. Moncy, J. Waldbjarn, C. Berggreen, Biaxial strain control fatigue testing strategies for composite materials,
Experimental Mechanics (2021)

= A. Moncy, B.F. Sgrensen, O. Castro, C. Berggreen, J.A. Glud, Propagation of tunnelling cracks in composite
materials under strain and force-controlled cyclic loading, Journal of Composite Materials (2022)

= A. Moncy, O. Castro, J.A. Glud, C. Berggreen, O.T. Thomsen, J.M. Dulieu-Barton, A tunnelling crack density
evolution model for FRP laminates subjected to cyclic multi-axial strain-controlled loading, (under review - 2023).

= A. Quinlan, A. Moncy, A. Bangaru, O. Castro, H. Stang, C. Berggreen, L.P. Mikkelsen, A. Michel, B.F. Sgrensen,
Multi-scale experimental analysis of tunneling cracks in composite laminates under cyclic loading, (In
Manuscript/Preparation - 2023).
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Thank you for your attention
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