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Ceramic Materials and Structures

Ashby’s Chart : Main Disadvantage of
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Why Architected Ceramics?

Tooth enamel  Glass sponge skeleton

» Stiffness/strength and toughness are mutually exclusive in traditional
engineering materials

» Biological materials use architecture and possess interesting
combinations of properties

Plain ceramic

S
Stiff and strong building

blocks
Designed architectures (
Weak interfaces

architectured ceramic

Force

/
Tablet sliding

Deformation

000 -

Barthelat et al. J. Mech. Phys. Sol. 2007, Aizenberg et al. science, 2005 , Habelitz et al. Archives of Oral Biology, 2009



Automated and Engineered Net Shaping
of Ceramics

Laser Chamber
Laser Chamber B\
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Why: Ceramics have different applications such as heat

shield systems for space vehicles, rocket propulsion _ =

. . Schematic of NRC laser system facility
components, and gas turbines. However, one of the main @ | o
challenges with ceramic processing is the machinability of
ceramics for producing complex parts. Unlike metals, ceramics |
are not able to maintain strength with traditional subtractive
manufacturing techniques as the machined cuts are not
damage-free.

Goal: Develop industrially scalable fabrication laser
technique
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ceramic stochastic design: s
defect free and precise — e 1

microscopy images of laser machining of ceramic

Outcome: Developing a laser material removal system will hexagonal design using picosecond fiber laser
allow the design of different advanced engineering applications
and represent an effective and efficient manufacturing tool that
can be incorporated in engineered net shaping systems.

I. Esmail, et al., Optics & Laser Technology 2021. Angle cut: tunable and defect free Bicinspired cut: pr
C. Beausoleil, et al., Ceramics International 2020. and programmable



Bio-inspired Multi-layer Architectured Ceramic
Composites with Multi-hit Capabilities

Goal: Develop a high-toughness high-strength ceramics for
ambient and high-temperature applications

Mineral
tablets
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WNhy: Ceramics suffer from low tensile strength and brittle fracture e oo
behavior, which limit their range of applications where high —) ceromic shets ~—
toughness is required. M

HOW: Nature’s inspiring motifs and unique design concepts can
open new avenues to solve ceramics’ brittleness. Many biological
materials such as mollusk shells, and teeth are comprised of hard " INISS NN
and Stiff yet britﬂe bUI'dlng b|0CkS bonded by tougher and Weaker Manufacturing steps: Laser machining eramic tiles and simplified lamination. ...
interfaces.
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Outcome: Improving multi-hit capability of bio-inspired
ceramics; extending design space of ceramics by tuning
architectures using NRC subtractive manufacturing capabilities.
The developed techniques could be applied to personnel armor
SyStemS and vehicles. H. Yazdani, et al., Extreme Mechanics Letters 2020.




Partially vs. Fully Cut Architectures —
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Yazdani et al, Extreme Mechanics Letters, 2020
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Stochastic Designs of Architected

Ceramics

Armadillo Dragonfly wing

v Toughness enhancement scales with the
degree of stochasticity

v Up to 330% toughness improvement
compared to the baseline

v" Further demonstration of enhanced protection

Yazdani et al., Advanced Functional Materials (2021)
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Suture Ceramics for Flexible Ceramics
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Experimental Mechanics: Digital Image
Correlation (DIC)
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» To capture the failure initiation and propagation during the loading
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" » The deformation is spread in the architectured ceramics unlike the plain ceramic
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Concluding Remarks

v’ Bio-inspiration: an approach to overcome brittleness of ceramics

v Deep, high precision subtractive manufacturing of industrial ceramics:
a necessary step towards fabrication of toughened ceramics

Demonstration of Multi-hit Capability

v" A combination of finite element analysis and experimental approaches:
a cost effective/quick solution to identify optimal designs for a target
application

v Fabrication of single-layer and multi-layer architected ceramics based 258

on subtractive manufacturing S0l 5208
Stochastic multilayered ceramics
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