APPARENT ELASTIC MODULUS OF POLYETHYLENE AND ITS NANOCOMPOSITES MEASURED AT DIFFERENT SCALES

Zainab Al-Magdasi, Illia Dobryden, Nils Almqvist, Roberts Joffe Luleå University of Technology

INTRODUCTION

Graphene/Graphite Nanoplatelets (GNPs)

Graphene Ref. 130000 350 (steel) 1000 200 (steel) 4000 400 (silver) 6000 70% > silver

Nanoplatelets

Kumar, A., Sharma, K. & Dixit, A.R. A review on the mechanical properties of polymer composites reinforced by carbon nanotubes and graphene. Carbon Lett. 31, 149–165 (2021).

Agglomeration Challenges

Kornmann, X. (2001). Synthesis and characterisation of thermoset-layered silicate nanocomposites (Doctoral dissertation, Luleå tekniska universitet).

Real composite is a mixture of all of the above! Challenging to predict the properties at this scale

LULEĂ

OF TECHNOLOGY

UNIVERSITY

OBJECTIVES

- How can we best characterize nanocomposites?
- How valid is the different techniques at different scales? How do they compare? Which is the most representative?
- What are advantages and disadvantages of each of those techniques?

METHODOLOGY

GNP Masterbatch

Commercial product

Recyclable

Stable production

Suitable form for industry

Less hazardous

Melt Compounding

Advantages

Upscaling possibility

Use of masterbatch

No process modification

Environmentally friendly

Solvent free

Limitations

High viscosity of the melt

High percolation threshold

Limited to short fibers

Tests at Different Scales

Instron 3366
Displacement control test
2mm/min

NanoTest Vantage 10 mN max load 15 sec loading time Berkovitch indenter A Bruker Dimension Icon AFM ImAFM mode
Frequencies near resonance
TAP300 DLC Probe

ImAFM

- (a) The linear response of the resonator away from the surface. When driven with two frequencies, f1 and f2, the linear system responds with oscillation at f1 and f2.
- (b) When close to the surface, nonlinear tip-surface interactions generate IMPsof many orders.

PLATZ, Daniel, et al. Intermodulation atomic force microscopy. Applied Physics Letters, 2008, 92.15: 153106.

LULEÂ

OF TECHNOLOGY

RESULTS

Comparison of results at the different scales

Apparent Modulus (GPa)

	Tension	NI	ImAFM
LDPE	0.42	0.71	0.42-1.1
LDPE4	0.79	0.71	0.9
HDPE	1.89	1.84	2.7
HDPE2	2.11	3.46	3.3
GNPs	4.79*	22.6*	~4

HDPE2

1 2 3 4 5 6 7 8

Modulus (GPa)

^{*} Calculated using micromechanics

Tensile test

- Can obtain more than one property (modulus, strength, Poisson's ratio, etc.)
- More averaged/homogenized value useful for material selection for application (on the final stage of materials development)
- Limitation require large amount of material to produce statistically representative results

Nano-indentation

- Relatively small samples good for materials under development
- Could do large number of indents in relatively short time for statistics
- Limitations more complicated sample preparation routines,
 expensive equipment, viscoelastic effect (VE-effect)
- Needing to know Poisson's ratio to evaluate the modulus (in

$$rac{1}{E_{
m r}} = rac{1- arphi_m^2}{E_m} + rac{1- arphi_i^2}{E_i}$$

VE-effect in NI

Indents disappear with time for materials exhibiting higher VE

Evaluating stiffness based on other missing properties of particle

LDPE 4

ImAFM

- Can resolve microstructure of polymer as well
- Affected by surface freshness (presence of oligomers)
- Working in the scale of reinforcement
- Quantitative output together with image of mapped property
- Relatively less demanding surface preparation (compared to NI)

Conclusions

- Characterization has been performed at the different scales and ImAFM seems to be good complementary technique in the development stage of material.
- ImAFM gives reasonable values of the effective modulus of particles that could be used for modelling
- Nano-indentation gives values depending on the indented area and requires wider pre-knowledge of the material
- All techniques fail to predict or solve the problem at higher concentrations due to interaction between the particles

THANK YOU FOR LISTENING

For details related to ImAFM contact

Dr. Illia Dobryden at: illia.dobryden@ri.se

