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Goal:

To better understand translaminar fracture crack propagation at the microscale.

Objectives:

• To design a new mini compact tension specimen that:

• Is geometrically suitable for 4D synchrotron radiation computed tomography, 

• Can yield stable crack propagation.
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Goal & Objectives
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3D View: Swiss Light Source SLS
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Mini-Doubly-Tapered 
Pac-Man

Mini-Protruded 

Material:
Thin-Ply HS40-736LT

Lay-Up:
[902/0/902/0/902/0/902]

Pre-crack lengths:
2 𝑚𝑚
3 𝑚𝑚
4 𝒎𝒎

Compact Tension Experiments: Specimen Design
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Compact Tension Experiments: F−δ Results
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Detailed pull-out characterisation
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200 µm

Fibre Breaks Ahead of the Crack Tip
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Ply-by-Ply Hybrid
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Ply-by-Ply Hybrid

First 90° Ply Block Second 90° Ply Block Third 90° Ply Block
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Ply-by-Ply Hybrid

First 0° Ply Block Second 0° Ply Block
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Fibre-by-Fibre Hybrid
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Fibre-by-Fibre Hybrid

Significant bundle pull-out

Also noted in a high-strain baseline specimen



0

2

4

6

8

4 4.5 5 5.5

19

Ply #

Crack Advancement [mm]

0

50

100

150

0 0.5 1

Displacement [mm]

Load [N]

Fibre-by-Fibre Hybrid

The difference between the crack fronts at 0° and 90° is 595±96 µm
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FE Model: Defining Fracture Behaviour 
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FE Model: Defining Fracture Behaviour 



Results:

• The mini-protruded design, with a pre-crack half its length, results in stable crack propagation,

• 2D slices reveal advancing crack fronts in the 90° plies and lagging fronts in the 0° plies on fracture surface,

• FEM can capture this!

• Interlayer & intrayarn hybrids have a higher translaminar fracture toughness than either of their two
baseline configurations.
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Conclusions
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