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ABSTRACT 

Short fiber-reinforced plastics (SFRPs) are extensively utilized in the automotive and aerospace fields 

due to their superior ease of manufacturing, affordability, and exceptional mechanical properties.  

However, as automotive components made from SFRPs encounter intricate mechanical stresses, it is 

necessary to have an accurate micro-mechanical model for their mechanical behavior prediction. In 

this study, we propose a machine learning-assisted two-step homogenization framework of short fiber-

reinforced plastics (SFRPs). A series–parallel artificial neural network (ANN) system is constructed 

and trained to facilitate the time-consuming reconstruction of orientation distribution function and 

pseudograin decomposition procedures. Then, we incorporated the series-parallel ANN system, Mori-

Tanaka model, and Voigt model into ABAQUS user material subroutine (UMAT). The elastic moduli 

predicted by UMAT were in good agreement with experimental values, thereby showing the validity 

of the proposed framework.  

 

1 INTRODUCTION 

The demand for short fiber-reinforced plastics (SFRPs) is on the rise in the automotive and 

aerospace industries, primarily due to their cost-effectiveness, superior mechanical properties, and 

design flexibility [1]. However, since SFRP automotive parts experience intricate loading, it's crucial 

to have the ability to predict their complex behavior. Therefore, a fundamental approach that can 

simulate the mechanical response of SFRPs is needed. The most comprehensive method used for 

mechanical behavior prediction of SFRPs considers mean-field homogenization methods based on 

Eshelby’s single inclusion theory [5], such as the Mori– Tanaka model [6], self-consistent model [7], 

double-inclusion model [8], and differential scheme model [9]. However, these homogenization 

models are unsuitable for interpreting SFRPs because these models require the target composite to 

have inclusions of similar shape and orientation [10]. Various studies have explored the pseudograin 

approach as a two-step homogenization procedure, which was first suggested by Pierard et al. [10] to 

overcome the constraints of direct finite element simulation. This technique involves assumption that 

the short fibers in each pseudograin are elastic and aligned in a single direction, with a representative 

orientation derived from processing the orientation distribution function (ODF). For ODF 

reconstruction method, Maximum Entropy (ME) method is one of the popular choices examining the 

fiber orientation of all positions, specifically for injection molded SFRPs. However, determining the 

optimum parameters of Bingham distribution for ODF reconstruction and pseudograin decomposition 

procedures of SFRP parts require massive computational cost, especially when it comes to iterative 

minimization procedure. To address this problem, we examined research that utilized artificial neural 

networks (ANNs) to decrease computational expenses in the field of constitutive modeling of 

composite materials. In this study, we proposed a machine learning-assisted two-step homogenization 

framework for short fiber-reinforced plastics (SFRPs). A series-parallel artificial neural network 

(ANN) system was constructed and trained to facilitate the reconstruction of time-consuming 

orientation distribution function (ODF) and thus to enable to repudiate pseudograin decomposition 

procedures. Then, we implemented the series-parallel ANN system, Mori-Tanaka model, and Voigt 
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model to ABAQUS user material subroutine (UMAT). The elastic modulus values predicted by 

UMAT were in good agreement with both DIGIMAT and experimental values, maintaining low 

computational time. The graphical abstract of the overall procedure of our study is provided in Figure 

1.  

 

 

 
 

Figure 1: Schematic diagram of the overall procedure; the color change of the arrow indicates the 

rotation of the coordinates 

 

 

2 THEORETICAL BACKGROUND 

2.1 Reconstruction of fiber orientation distribution function (ODF)  

 

Utilizing the orientation tensor for the mechanical simulation of SFRPs poses a significant 

challenge because two distinct ODFs can have identical orientation tensors. Thus, there is a need for a 

reconstruction model that can identify a specific ODF when a particular orientation tensor is provided. 

The most widely used model is the Maximum Entropy (ME) reconstruction model [11], which is 

based on empirical observation that the microstructures of injection molded SFRPs tend to have 

maximum entropy. The presented research discovered that the ODF with the maximum entropy can be 

expressed as equation (1), which involves a bivariate Bingham distribution on the unit sphere. The 

parameters of this distribution are α and β. Under this given situation, entropy (S) and orientation 

tensor (aij) can be described as equation (2) and (3). In last, the minimization procedure of Pareto 

optimization method was adopted to determine the α and β values that would optimize the entropy 

value in the final step of the ODF reconstruction procedure.  

 

                                                         𝜓(ℙ𝑘) = 𝐶𝑒−𝛼𝑃3𝑘
2 +𝛽𝑃1𝑘

2
 .                                                              (1) 

 

                                                         𝑆 = − ∑ 𝜓(ℙ𝑘) ln(𝜓(ℙ𝑘))𝑘  .                                                       (2) 

 

                                                        𝑎𝑖𝑗 = ∑ 𝑃𝑖𝑘𝑃𝑗𝑘𝜓(ℙ𝑘)𝑘  .                                                                (3) 

 

 

2.3 Pseudograin decomposition 

 

Once the reconstruction process is finished, the ODF is disintegrated into multiple pseudograins 

that contain short fibers aligned in a single direction. The decomposition process is designed to meet 

the homogenization models' criteria, which mandate that composites should have inclusions with 
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comparable orientation and shape. In this current study, we opted to use a weighted k-means clustering 

algorithm instead of evolutionary algorithm to significantly decrease computational time while 

preserving a high level of precision. K-means clustering algorithm, also known as Lloyd’s algorithm 

[12], is an algorithm used to divide a set of  n data points 𝕏 = (x1,x2,…,xn) into k (≤n ) clusters. The 

algorithm begins with defining a set of k arbitrary centroids ℂ = (c1,c2,…,ck) that is selected uniformly 

and randomly from 𝕏. Each data point in 𝕏 is then assigned to the nearest centroid based on Euclidean 

distance, and the data points assigned to the same centroid form a cluster. Consequently, the Centroid 

ℂ is updated by finding the center of mass of the data points in the same cluster. The process is 

repeated until the change in centroid position becomes smaller than the tolerance value. Different from 

general k-means clustering, weighted k-means clustering assigns weights 𝕎 =(w1,w2,…,wn) to each 

data point 𝕏 when calculating the new center of mass ℂ . 

 

 

3 MATLAB IMPLEMENTATION 

3.1 MATLAB implementation of ODF reconstruction and pseudograin decomposition procedure 

 

The process of reconstructing the ODF and decomposing pseudograins was carried out using 

MATLAB. The icosphere algorithm was used to divide a unit sphere into triangular meshes. As 

previously mentioned, Pareto optimization was utilized to find two parameters of bivariate Bingham 

distribution that maximizes entropy. Additionally, Additionally, the weighted k-means clustering was 

initialized using the k-means++ seeding algorithm. Note that the number of clusters, denoted as 

pseduograins in this concept, were fixed to 12 for overall convenience.  

 

 

4 APPLICATION OF MACHINE LEARNING APPROACH 

4.1 Series-parallel ANN system 

 

A series–parallel ANN system consisting of five fully connected ANNs was proposed to train ODF 

reconstruction and pseudograin decomposition procedures. The initial ANN in the series-parallel 

architecture is labeled as "OT2AB". This name indicates that it takes diagonal orientation tensor (OT) 

data as input and produces the α and β (AB) parameters of the bivariate Bingham distribution as 

output. The 2nd–4th ANNs are named after “AB2TPGi” (i=1,2,3 ), which imply that they provide 

equivalent orientations (𝜃, 𝜙) of PG1, PG2, and PG3, respectively, from α and β input data obtained 

from OT2AB. To generate the remaining information for PG4 to PG12, the data from PG1-PG3 was 

reflected sequentially about the x-axis, y-axis, and origin. 

 
 

4.2 Training series-parallel ANN system 

 

For the purpose of training the series-parallel artificial neural network system, 10,000 diagonal 

orientation tensors were generated. The accumulated data produced by the proposed series-parallel 

ANN system was then trained using the MATLAB Deep Learning Toolbox, with the mean squared 

error employed as the performance metric. The acceptable training result for OT2AB is presented in 

Figure 3 as a regression plot and training state plot, with approximate metric R-square value of 0.99. 

Identical training procedures were conducted for remaining other four ANNs (AB2PG1, AB2PG2, 

AB2PG3, AB2VF), all of which showed successful training performance as well (Figure 4). 
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Figure 3: Regression and training state plots of OT2AB training results  

 

 

 
 

Figure 4: Regression and training state plots of (a) AB2PG1, (b) AB2PG2, (c) AB2PG3, and 

(d) AB2VF training results 

 

 

4.3 UMAT implementation and validation 

 

A machine learning-assisted two-step homogenization procedure consisting of series-parallel ANN 

system, Mori-Tanaka, and Voigt model, was implemented into ABAQUS via UMAT (see Fig. 1). 
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Validation of the proposed method was carried out by conducting simple tensile test simulations for 

two diagonal orientation tensors at opposite extremes and six non-diagonal orientation tensors. As a 

result, tensile behavior simulation results made by UMAT and DIGIMAT are compared in Figure 5. 

The results of the simulations showed that the tensile stress-strain curves obtained by UMAT had an 

average error of within 2% compared to DIGIMAT, regardless of the specific features of the target 

orientation tensor. Hence, corresponding result confirmed the validity of utilizing a series-parallel 

ANN system for UMAT simulation. 

 

 
 

Figure 5: Comparison of tensile stress-strain curves obtained by UMAT and DIGIMAT for various 

orientation tensor cases  

 

 

5 CONCLUSION 

In this study, a machine learning-assisted two-step homogenization framework of SFRPs was 

proposed. ME reconstruction model and weighted k-means clustering algorithm were adopted to 

formulate12 pseudograins with effective orientations and volume fractions based on a given arbitrary 

orientation tensor. Nevertheless, due to the computationally intensive and iterative nature of both 

models, this methodology was not suitable for implementation in a user material subroutine of 

commercial finite element analysis software. To overcome this limitation, this study developed and 

trained a series–parallel ANN system using pre-calculated input and output data. To establish a two-

step homogenization framework, the study integrated the series-parallel ANN system, Mori-Tanaka 

model, and Voigt model into the ABAQUS UMAT subroutine. The elastic modulus values predicted 

using UMAT demonstrated good performance, with less than 2% error compared to experimental 

values. 
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