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ABSTRACT 

A three-dimensional (3-D) finite element (FE) model was developed to accurately predict ply-by-ply 
damage sizes and failure modes interactions in a composite laminate after a low-velocity impact (LVI) 
event. To predict different failure modes, the cohesive zone modelling (CZM) technique and the 
LaRC05 failure criteria were employed. Cohesive layers were deployed between each adjacent 
composite ply to predict delamination. In addition, cohesive elements were embedded inside the 
composite plies to predict the delamination and matrix cracking interactions and delamination migration 
from one layer to another. The LaRC05 failure criteria were employed using a VUMAT user-defined 
material subroutine in Abaqus to account for matrix cracking, fibre breakage, fibre splitting, and fibre 
kinking. However, the need to find the matrix fracture plane (𝛼𝛼) and fibre kink band angle (𝜓𝜓) made the 
LaRC05 failure criteria 122% slower than the 3-D Hashin criteria in the impact simulation. To reduce 
the time required to find 𝛼𝛼 and 𝜓𝜓, the Selective Range Golden Section Search (SRGSS) algorithm was 
used to efficiently find these angles. Using the SRGSS algorithm, 𝛼𝛼  and 𝜓𝜓  were found with a 1° 
precision 48% faster than the model without this search algorithm, and it was only 14% slower than the 
3-D Hashin criteria. The LaRC05 criteria with the SRGSS algorithm captured well a realistic 
representation of angled intralaminar matrix cracking and failure mode interactions while improving the 
computational efficiency.  

1  INTRODUCTION 

Low-velocity impact (LVI) events can occur during the fabrication, service, and maintenance of 
composite airframes. The LVI may result in widespread internal damage and severe reduction in the 
strength and stability of the structure but the damage can be hard to detect. To support the design and 
maintenance of composite airframe structures, it is important to establish damage tolerance of the 
composites. Currently, the damage tolerance of composites heavily relies on physical testing, due to 
difficulties of numerical simulation associated with complex damage modes, and prediction of damage 
progression and strength reductions resulting from LVI. The goal of this study was to develop reliable 
computational models to simulate the impact damage and predict the damage extent of composites.  

A high-fidelity three-dimensional (3-D) finite element (FE) modelling methodology was developed to 
accurately simulate the damage modes and damage progression in laminated composites during an 
impact event. To be able to predict different damage modes and their interactions, the cohesive zone 
modelling (CZM) technique and the LaRC05 failure criteria [1] were employed. To reduce the time 
required to find the matrix fracture plane angle (𝛼𝛼) and the fibre kink band angle (𝜓𝜓), the Selective 
Range Golden Section Search (SRGSS) algorithm [2] was used to efficiently find these angles with a 1° 
precision. The simulation time and the accuracy of the predicted impact responses by the model with 
the LaRC05 failure criteria with 1° and 5° angle intervals, the model with the LaRC05 with SRGSS 
algorithm, and the model with the 3-D Hashin criteria [3] were compared. In addition, the ply-by-ply 
matrix cracking, fibre breakage, fibre splitting, fibre kinking, and interlaminar delamination predicted 
by the model with the LaRC05 with SRGSS algorithm was presented for a quasi-isotropic composite 
laminate after a 30 J impact event. 
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2  MODELLING PROCEDURE 

2.1  FINITE ELEMENT MODEL ASSEMBLY 

The assembly of the FE model is shown in Fig. 1(a) and (b). A 254 mm by 304.8 mm (10 in by 12 in) 
carbon/epoxy (IM7/977-3) composite laminate with a stacking sequence of [0/45/90/-45]4s was 
modelled in Abaqus/CAE. This laminate was impacted by a hemispherical impactor with a diameter of 
15.87 mm moving with a kinetic energy at impact of 30 J. The support plate and impactor were 
considered rigid bodies. Four rubber cylinders were modelled to simulate the clamps, and the rigid body 
movement of the laminate was constrained in the X and Y (in-plane) directions by defining contacts 
between the edges of the laminate and three pins of the support plate. 

2.2  COHESIVE ZONE MODEL  

To predict delamination and intralaminar matrix cracking, cohesive elements with a bilinear traction-
separation constitutive relationship were employed between each adjacent composite ply and also inside 
each ply, as shown in Fig. 1(c). The intralaminar cohesive elements were embedded with a 45° angle to 
the thickness of the laminate according to the experimental observations [4]. The damage initiation in 
the cohesive elements was determined by the quadratic stress criterion and the damage evolution was 
governed by the power law damage evolution criterion [3]. 

 
Fig. 1. (a) Assembly of the LVI FE model, (b) Layup configuration, (c) Schematic of the cohesive elements 

employed in the FE model. 

2.3  CONTINUUM DAMAGE MODEL 

To predict fibre tensile, splitting, and kinking failures, a VUMAT user-defined subroutine was 
developed for Abaqus/Explicit based on the LaRC05 failure criteria. This subroutine was also used to 
capture matrix cracking in regions other than the predefined locations by the intralaminar cohesive 
elements. The LaRC05 failure criteria consist of four failure modes: matrix failure, fibre tensile failure, 
fibre splitting failure, and fibre kinking failure. A brief summary of the LaRC05 failure criteria is 
presented in this section. A detailed explanation of this failure criteria can be found in [1]. 

To predict the matrix-dominated failure, variations of the Mohr-Coulomb criterion were proposed by 
Puck et al. [5, 6], and they were shown to be capable of predicting matrix failure under multi-axial 
stresses. In the LaRC05 failure criteria [1], the Mohr-Coulomb failure criterion was adapted as well for 
predicting matrix failure in unidirectional composite plies. Using this failure criterion, it is possible to 
predict the fracture plane angle, which is important for predicting the consequences of failures in 
composite laminates. The failure index for matrix failure (FIM) was defined as Eq. (1): 
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Matrix failure happens when 𝐹𝐹𝐹𝐹𝐹𝐹 ≥1. This criterion is designed for both tensile and compressive matrix 
failures. The last term in the criterion represents the contribution from the positive normal traction in 
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the crack opening. In Eq. (1), < > are the Macaulay brackets; 𝑆𝑆𝑇𝑇 and 𝑆𝑆𝐿𝐿 are longitudinal and transverse 
shear strengths, 𝜏𝜏𝐿𝐿, 𝜏𝜏𝑇𝑇 and 𝜎𝜎𝑁𝑁 are longitudinal and transverse traction, and normal traction components 
in the fracture plane, respectively, and can be obtained by stress transformation given in Eq. (2): 

(2) 

𝜎𝜎𝑁𝑁 =
𝜎𝜎2 + 𝜎𝜎3
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𝜏𝜏𝐿𝐿 = 𝜏𝜏12 𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼) + 𝜏𝜏31𝑐𝑐𝑠𝑠𝑠𝑠 (𝛼𝛼) 
where 𝛼𝛼 is the angle that maximizes 𝐹𝐹𝐹𝐹𝐹𝐹 and is obtained numerically by evaluating the function at 
selected angles between 0° and 180°. In Eq. (2), the subscripts of the stresses are showing the directions 
that are shown in Fig. 2(a). The fracture plane angle for pure transverse compression (𝛼𝛼0) is a material 
property and can be measured experimentally. For carbon or glass fibre composites 𝛼𝛼0 is between 51° 
and 55° [6–8]. For the material (IM7/977-3) used in the current study, 𝛼𝛼0 was set to 53° as suggested in 
[1]. The friction coefficients 𝜂𝜂𝑇𝑇 and 𝜂𝜂𝐿𝐿 in Eq. (1) are introduced to account for the effects of normal 
pressure on the failure response. Their effects increase the shear strength in the presence of compressive 
normal traction and decrease the shear strength in the presence of tensile normal traction. The friction 
coefficient 𝜂𝜂𝐿𝐿  is a material property and was set equal to 0.082 for IM7/977-3 [1]. The friction 
coefficient  𝜂𝜂𝑇𝑇 is a function of 𝛼𝛼0 and can be calculated using Eq. (3): 

(3) 𝜂𝜂𝑇𝑇 = −
1
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Fig. 2. (a) Schematic of a matrix fracture plane, (b) Schematic of a kink band formation, (c) Micrograph of a 

kink band formation (reprinted from [1] with modifications). 

For predicting the fibre tensile failure, the maximum stress failure criterion was used in the LaRC05 [1]. 
It has been shown that this simple criterion correlates well with existing experimental data [9]. In Eq. 
(4), 𝜎𝜎1  and 𝑋𝑋𝑇𝑇 are stress and tensile strength in the fibre direction, respectively:  

(4) 𝐹𝐹𝐹𝐹𝐹𝐹 =
〈𝜎𝜎1 〉+
𝑋𝑋𝑇𝑇

 

where FIT is the fiber tensile failure index. The physics of fibre compressive failure is less well 
understood than other failure modes in composite laminates. Kink bands have been observed in different 
materials and at different scales in the failed material under compressive loading [1]. However, there is 
no agreement on whether micro-buckling of the fibres or localized matrix failure next to misaligned 
fibres [10, 11] is the reason for kink band formation. Experimental observations of Pinho et al. [1] 
showed that a kink band resulting from matrix failure and micro-buckling is not necessarily the 
triggering factor for this failure mode. Fibre kinking is assumed to result from shear-dominated matrix 
failure in a misaligned frame under significant longitudinal compressive stress. If the compressive stress 
in the fibre direction is not significant, the shear-dominated matrix failure in the misaligned frame would 
result in fibre splitting. Based on experimental observations, Pinho et al. [1] suggested that fibre kinking 
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only occurs when the magnitude of the longitudinal compressive stress (𝜎𝜎1) is greater than half of the 
compressive strength (𝑋𝑋𝑐𝑐) in the fibre direction (𝜎𝜎1 < −𝑋𝑋𝑐𝑐/2 ), and fibre splitting occurs when 
longitudinal compressive stress magnitude is lower than half of the compressive strength in the fibre 
direction (−𝑋𝑋𝑐𝑐/2 < 𝜎𝜎1 ≤  0). In the LaRC05, both failure indices for fibre splitting (FIS) and fibre 
kinking (FIK) are presented using Eq. (5): 
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The rotated coordinate systems relevant for the description of a kink band are shown in Fig. 2(b) and 
(c). The stresses should be rotated first to the kink-band plane (stresses that are indicated with 𝜓𝜓 
superscript) and subsequently to the misalignment frame, 𝜙𝜙 , (stresses that are indicated with 𝑚𝑚 
superscript). The relevant stress rotation equations for rotation to the kink-band plane are given in Eq. 
(6):  

(6) 

𝜎𝜎2
𝜓𝜓 = 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜓𝜓 𝜎𝜎2 + 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜓𝜓 𝜎𝜎3 + 2 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 𝜏𝜏23 

𝜏𝜏12
𝜓𝜓 = 𝜏𝜏12 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 + 𝜏𝜏13 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓 

𝜏𝜏23
𝜓𝜓 = −𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜎𝜎2 + 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓𝜎𝜎3 + (𝑐𝑐𝑐𝑐𝑐𝑐2 𝜓𝜓 − 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜓𝜓)𝜏𝜏23 

𝜏𝜏31
𝜓𝜓 = 𝜏𝜏31 𝑐𝑐𝑐𝑐𝑐𝑐 𝜓𝜓 − 𝜏𝜏12 𝑐𝑐𝑠𝑠𝑠𝑠 𝜓𝜓 

The stress rotation equations for rotation to the misalignment frame (𝜙𝜙) are given in Eq. (7): 

(7) 
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𝜓𝜓 + (𝑐𝑐𝑐𝑐𝑐𝑐2 𝜙𝜙 − 𝑐𝑐𝑠𝑠𝑠𝑠2 𝜙𝜙)𝜏𝜏12

𝜓𝜓  

𝜏𝜏23𝑚𝑚 = 𝜏𝜏23
𝜓𝜓 𝑐𝑐𝑐𝑐𝑐𝑐 𝜙𝜙 − 𝜏𝜏31

𝜓𝜓 𝑐𝑐𝑠𝑠𝑠𝑠 𝜙𝜙 
The angle of the kink band angle (𝜓𝜓) should be between 0° and 180° so as to maximize the failure index 
FIS and FIK. The misalignment angle (𝜙𝜙) is the sum of the initial misalignment angle (𝜙𝜙0) due to 
manufacturing defects and the shear strain (𝛾𝛾𝑚𝑚0 ) expressed in a coordinate system aligned with the 
manufacturing defect: 
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where 𝛾𝛾𝑚𝑚0  can be obtained using Eq. (9) [7]: 
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The initial misalignment angle (𝜙𝜙0) is a material property that can be obtained by the iterative equation 
given in Eq. (10): 
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where 𝜙𝜙𝑐𝑐 can be obtained from Eq. (11) [7].  
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Using Eq. (10), 𝜙𝜙0 was found equal to 2.39° for the material (IM7/977-3) that was used in the current 
study. 
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2.4  SEARCH ALGORITHM FOR FRACTURE PLANE AND KINK-BAND ANGLE 

In the LaRC05 failure criteria, the matrix fracture plane (𝛼𝛼 ) and the fibre kink band plane (𝜓𝜓 ) 
corresponding to the maximum values of the matrix (FIM) and fibre (FIS or FIK) failure indices need 
to be identified. To find these planes, the values of the failure indices were calculated by varying both 
𝛼𝛼 and 𝜓𝜓 angles between 0° and 180°. Without an efficient search algorithm, finding these two angles at 
every time increment for each finite element would be computationally cumbersome. In the current 
study, the SRGSS algorithm, which its efficiency and reliability had been tested for Puck’s criteria [2], 
was used for finding both 𝛼𝛼 and 𝜓𝜓. In the SRGSS algorithm, considering that the maximum number of 
local maxima for failure indices is three and the minimum distance between two local maxima is greater 
than 25°, the range of angles would be first divided into 18 sections of 10°, as illustrated in Fig. 3. Then, 
the points with two lower neighbours would be selected as a local maxima, and the range containing 
these maxima and the two neighbouring points (20° range) should be isolated. Afterward, the iterative 
golden section search (GSS) algorithm would be applied in each of the maxima-containing ranges to 
localize the maximum in each range. Finally, the global maximum could be identified. It has been 
reported [2] that after 6 iterations, the GSS algorithm can find the global maximum with a precision of 
1°.  

 
Fig. 3. An example of the selected ranges for the golden section search (GSS) algorithm. 

 

The flowchart of the LaRC05 part of the developed VUMAT subroutine is shown in Fig. 4. This 
procedure needs to be implemented at each time increment for each element integration point. First, the 
matrix fracture plane would be found using the SRGSS algorithm and the matrix failure index (FIM) 
would be obtained on that fracture plane. Afterward, if the stress is tensile (𝜎𝜎1>0), the fibre tensile failure 
index (FIT) would be calculated. Otherwise, the fibre kink band angle can be found, and depending on 
the magnitude of the stress in the fibre direction (𝜎𝜎1), either the fibre kinking failure index (FIK) or the 
fibre splitting failure index (FIS) could be calculated. In Fig. 4, 𝜃𝜃1 to 𝜃𝜃4 are the angles that were used in 
the SRGSS algorithm and are shown in Fig. 3; FIF is the fibre failure index and is equal to FIS or FIK 
depending on the magnitude of 𝜎𝜎1; “Section_number” is a counter for the angle increments. To account 
for the possibility that one of the local maxima may occur at 0° (or 180°) the “Section_number” varied 
from 0° to 190°.  

3  RESULTS 

In Table 1, a comparison of the computational time is presented between the FE model with the 3-D 
Hashin failure criteria and that with the LaRC05 failure criteria with different angle intervals for finding 
𝛼𝛼 and 𝜓𝜓. The simulation time shown in Table 1 is the time required for the simulation of 8.5 milliseconds 
of the impact event, which was longer than the contact duration thus enough to model the whole impact 
event. The VUMAT subroutines were employed with the same FE model and the only difference was 
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the failure criteria used along with the models. All modes were executed on a high-performance 
computer (HPC) with 32 CPU cores. The 3-D Hashin scheme was faster than the LaRC05 scheme 
because of not requiring the matrix fracture plane and fibre kink band angle. It was observed that the 
LaRC05 scheme with 1° interval was 122% slower than the 3-D Hashin scheme. Even by increasing the 
angle intervals to 5° the LaRC05 scheme was 24% slower than the 3-D Hashin scheme. By employing 
the SRGSS algorithm in the LaRC05 VUMAT, the resulting running time became only 14% slower than 
the 3-D Hahsin scheme. By comparing the LaRC05 with a 1° interval and the LaRC05 with SRGSS 
failure criteria that have a similar precision, it can be concluded that the SRGSS algorithm made the 
VUMAT 48% faster. 

The predicted impact responses of the composite laminate under 30 J impact were compared with the 
drop-weight test results in Fig. 5 and Table 2. The maximum displacement was predicted with less than 
1% error using each of the FE models. The predicted contact duration with the LaRC05 failure criteria 
was more accurate with less than 1% error, while the predicted contact duration with the 3-D Hashin 
failure criteria was 2% higher than the experiment. The peak force was also predicted with less than 8% 
underestimation with all FE models. A comparison between the key parameters of the predicted impact 
responses and the experimental results is shown in a radar diagram in Fig. 5. The results of the model 
with the LaRC05 failure criteria and with 1° angle intervals were almost hidden behind the results of the 
LaRC05 with the SRGSS algorithm. The reason for this was that both models predicted the matrix 
fracture and fibre kink band angles with the same precision of 1°. Therefore, the outputs of both models 
were very similar. However, the model with the SRGSS algorithm was able to give the results in almost 
half of the time required for the model with 1° intervals.  

 
Fig. 4. Flowchart of the VUMAT subroutine with the LaRC05 failure criteria and the SRGSS algorithm. 
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Table 1. Comparison between the simulation time using the 3-D Hashin and the LaRC05 failure criteria with 
different angle intervals. 

Failure Criteria Simulation 
Time (h) ‡ Difference 

3-D Hashin 51.2 0 
LaRC05 (Δ𝜓𝜓=1°, Δ𝛼𝛼=1°) 113.7 +122%† 
LaRC05 (Δ𝜓𝜓=5°, Δ𝛼𝛼=5°) 63.5 +24% 
LaRC05 (with SRGSS search algorithm with 1° precision) 58.8 +14% 

† Percentage difference of the simulation time compared to the impact FE model with 3-D Hashin failure criteria. 
‡ The time required for simulation of 8.5 milliseconds of the impact event. 

 

 
Fig. 5. Comparison between the predicted impact responses and the experimental result. 
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Table 2. Comparison between the key parameters of the impact predicted responses using the 3-D Hashin and 
the LaRC05 failure criteria. 

 
Maximum 

displacement 
(mm) 

Peak force 
(kN) 

Contact time 
(ms) 

Absorbed 
energy (J) 

3-D Hashin 8.04 (-0.4%†) 9.25 (-8%) 8.19 (+2%) 5.35 (+58%) 
LaRC05 (Δ𝜓𝜓=1°, Δ𝛼𝛼=1°) 8.00 (-0.9%) 9.39 (-7%) 8.02 (-0.1%) 4.20 (+24%) 
LaRC05 (Δ𝜓𝜓=5°, Δ𝛼𝛼=5°) 8.00 (-0.9%) 9.54 (-6%) 7.95 (-1%) 4.52 (+33%) 
LaRC05 (with SRGSS algorithm) 8.00 (-0.9%) 9.34 (-8%) 8.02 (-0.1%) 4.23 (+25%) 
Experiment 8.07 10.15 8.03 3.38 

† Percentage difference between the predicted and experimental results. 

 

The predicted ply-by-ply damaged areas for the [0/45/90/-45]4s laminate after a 30 J impact event are 
shown in Fig. 6. The first row shows the matrix cracking. The matrix cracks after a low-velocity impact 
event would appear either because of the shear stresses near the impacted surface or because of the high 
tensile stress perpendicular to the fibre direction near the back face of the laminate [3]. The area of the 
matrix cracking increased from the impacted surface to the back surface. Although the fibre tensile 
failure index increased as moving from the neutral plane to the back face of the laminate, it did not reach 
the value of 1 in any of the elements. Therefore, the occurrence of fibre tensile failure was not predicted 
for the laminate under an impact energy of 30 J. However, fibre splitting and a very small area of fibre 
kinking were captured near the impacted surface due to high local shear and compressive stresses. It 
should be noted that there is a difference in the colour of contours used to indicate the state of damage 
for the delamination and other failure modes. In the last row of Fig. 6, which shows delamination at each 
interface, the blue colour means that the damage has been initiated and the red colour means that the 
complete failure has happened and the continuum elements that were sharing the failed cohesive element 
were completely separated. However, in the other four rows of Fig. 6, which shows the fibre and matrix 
failure modes, the colours indicate the failure indices and only the red colour means that the failure index 
reaches the value of one and failure has occurred. Thus, the other elements, which are not red, maintain 
their initial stiffness.  

4  CONCLUSIONS 

Using the integrated continuum and discrete damage modelling techniques, both the 3-D Hashin and the 
LaRC05 failure criteria accurately predicted the impact responses of the selected composite laminates. 
The model with the LaRC05 failure criteria was 122% slower than the model with the 3-D Hashin failure 
criteria because of the requirement for finding the matrix fracture plane and fibre kink band angle. 
However, to predict the consequences of the failures in composite laminates knowing these angles is 
important. The SRGSS algorithm can be employed along with the LaRC05 failure criteria to reduce the 
computational time to determine the matrix fracture plane and fibre kink band angle. With using the 
SRGSS algorithm, the speed of the simulation of an impact event was increased by 48%, and it was only 
14% slower than the model with the 3-D Hashin failure that does not require finding the matrix fracture 
plane and fibre kink band angle.  
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Fig. 6. The ply-by-ply predicted damage areas. Each image shows a 40 mm by 40 mm area surrounding the 

impacted region. 
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