

A continuum damage mechanics model for short fiber reinforced composites $\frac{1}{\sqrt{2}}$

Claudio Findeisen, Zalikha Murni Abdul Hamid, Benedikt Rohrmüller, Dominik Spancken, Dominik Laveuve, Jörg Hohe

- **·** Introduction
- **Experimental study**
- **Eatigue degradation model**
- **.** Implementation and validation
- **E** Simplified post-processing routine
- Examples
- Conclusions

A continuum damage mechanics model for short fiber reinforced composites Introduction

short fiber reinforced composites

- **·** lightweight materials
- high flexibility regarding design of component shape and complexity
- **easy processing using injection molding**
- popular materials in many automotive and other transport applications

fatigue under in-service conditions complex process depending on

- **·** fiber volume fraction
- **·** fiber orientation distribution
- \blacksquare local loading situation triaxial stress state

 \triangleright advanced material model accounting for all relevant effects required for numerical simulation

A continuum damage mechanics model for short fiber reinforced composites Experimental study

fatigue crack formation and propagation

A continuum damage mechanics model for short fiber reinforced composites Experimental study

fatigue of notched specimens

- **S-N-curves based on crack initiation** shifted with respect to S-N-curves based on specimen failure
- creep affects slope of S-N-curves
- **.** investigated further in tests at variable temperature

damage variable

- **Example 2** starting point: orthotropic three-dimensional linear elasticity
- **·** introduction of damage

$$
\begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ 2\varepsilon_{23} \\ 2\varepsilon_{12} \end{pmatrix} = \begin{pmatrix} \frac{1}{(1-D)E_1} & -\frac{\nu_{21}}{E_2} & -\frac{\nu_{31}}{E_3} & 0 & 0 & 0 \\ -\frac{\nu_{12}}{E_1} & \frac{1}{(1-D)E_2} & -\frac{\nu_{32}}{E_3} & 0 & 0 & 0 \\ -\frac{\nu_{13}}{E_1} & -\frac{\nu_{23}}{E_2} & \frac{1}{(1-D)E_3} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{(1-D)G_{23}} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{(1-D)G_{13}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{(1-D)G_{13}} & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{(1-D)G_{12}} \end{pmatrix} \begin{pmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{14} \end{pmatrix}
$$
\nsingle damage variable:

\n
$$
D = \begin{cases} 0 & \text{initial, undamaged state} \\ 0, \dots, 1 & \text{partially damaged state} \\ 1 & \text{material failure} \end{cases}
$$

damage initiation

- **•** failure envelope
	- elastic domain assumed to be bounded by a Tsai-Wu-type failure envelope
	- **E** damage activation function similar to Maimí et al.'s approach: $F = \phi - 1 \leq 0$
	- **Exercise function in 3D-strain space:**

$$
\phi = \left(\left(\frac{\epsilon_{11}}{\gamma_{11}^t} \right)^2 - \frac{\epsilon_{11} \epsilon_{22}}{\gamma_{1122}^t} + \left(\frac{\epsilon_{22}}{\gamma_{22}^t} \right)^2 - \frac{\epsilon_{22} \epsilon_{33}}{\gamma_{2233}^t} + \left(\frac{\epsilon_{33}}{\gamma_{33}^t} \right)^2 - \frac{\epsilon_{33} \epsilon_{11}}{\gamma_{1133}^t} + \left(\frac{\epsilon_{23}}{\gamma_{23}^s} \right)^2 + \left(\frac{\epsilon_{13}}{\gamma_{13}^s} \right)^2 + \left(\frac{\epsilon_{12}}{\gamma_{12}^s} \right)^2 \right)^{\frac{1}{2}}
$$

- **•** critical strains γ_{ij} , γ_{klpq} : material strength parameters to be determined experimentally
- static failure once actual strain state reaches failure envelope

$$
\overline{\mathcal{W}}
$$
 Fraunhofer

damage evolution

- **•** previous 1D stress based model:
	- **E** damage driven by microplastic work: $dD \sim dw$
	- **EXEC** microplastic work increment estimated from Ramberg-Osgood equation

$$
\blacksquare \text{ resulting in: } \mathrm{d}D \begin{cases} \sim \sigma^n \, \mathrm{d}\sigma & \text{if } \sigma \ge 0\\ = 0 & \text{else} \end{cases}
$$

E assumption here: damage driven by approach of the failure envelope by actual strain state

$$
dD = \begin{cases} A \phi^n \, d\phi & \text{if } d\phi \ge 0 \\ 0 & \text{else} \end{cases} \qquad \text{with } A = 1 + n \qquad \text{due to } \int_{\phi=0}^1 dD = 1
$$

• material parameters: $\gamma_{11}^{\rm t}$, $\gamma_{1122}^{\rm t}$, $\gamma_{22}^{\rm t}$, $\gamma_{2233}^{\rm t}$, $\gamma_{33}^{\rm t}$, $\gamma_{1133}^{\rm t}$, $\gamma_{23}^{\rm s}$, $\gamma_{13}^{\rm s}$, $\gamma_{12}^{\rm s}$, n

effect of fiber orientation distribution

definition of the fiber orientation in terms of the second order fiber orientation tensor

 $a_{ij} =$ a_{11} a_{12} a_{13} a_{12} a_{22} a_{23} a_{13} a_{23} a_{33} or alternatively in principal axes space $a_{ij}=$ a_I 0 0

- **determination of the parameters in the** principal axes system at three reference states
- **Example 1** interpolation in between the orientation states
- **•** for variable temperature interpolation between selected discrete "thermal nodes"

A continuum damage mechanics model for short fiber reinforced composites Implementation and validation

implementation as a user defined model into commercial finite element program (ABAQUS)

· time domain formulation **• numerically efficient formulation since strain space formulation** avoids (iterative) solution of local nonlinear system of equations **preliminary validation against experimental data base at coupon level** ■ material PA66 GF35 120 E 0.1 **Exercise 10 Figure + tension-tension fatigue (** $R=0.1$ **) at 10 Hz** gate ■ specimen orientation: 0°, 30°, 90° section ęł ■ ambient temperature (23°C) source: \blacksquare dry as molded condition (rel. humidity < 0.1 wt%) ■ De Monte, M., Moosbrugger, E., & Quaresimin, M.: *Compos. A* 41 (2010) 1368-1379. ■ De Monte, M., (2007-2008). PhD Thesis. Bologna, Florence, Padua.

Fraunhofer **IWM**

Fraunhofer

LBF

A continuum damage mechanics model for short fiber reinforced composites Simplified post-processing routine

post-processing version of the model implemented in Python 3:

• neglects creep \rightarrow **linear model** \rightarrow **unit-load FEA and scaling of strain results**

$$
\varepsilon_{ij,ref} = f(L_{ref}) \qquad \varepsilon_{ij}(t) = \frac{L(t)}{L_{ref}} \varepsilon_{ij,ref} \qquad i, j \in \{1,2,3\}
$$

▪ numerical integration of damage evolution for nodal strain-time function

$$
D = \int \frac{dD}{dt} dt = \int A \Phi^n \frac{d\Phi}{dt} dt \qquad \text{for } d\Phi > 0
$$

contour plot of nodal fatigue lives (example) source: final report IGF-project no. 20474 N

with A , Φ , n defined as above.

 \triangleright lower computational expenses but simplification reduces accuracy

A continuum damage mechanics model for short fiber reinforced composites Examples

preliminary validation against experimental data base at coupon level

- ➢ good approximation of experimental results by proposed fatigue damage model
- perfect prediction of S-N-curve as straight line in double logarithmic representation

A continuum damage mechanics model for short fiber reinforced composites Examples

validation under bending and variable temperature: "T"-specimens

Fraunhofer Fraunhofer **IWM** LBF

A continuum damage mechanics model for short fiber reinforced composites Examples

validation under multi axial loading: "submarine"-specimen"

- **•** geometry and loading conditions $max_{\substack{0 \text{odd } n}}$ load level (relative to max. load $\frac{1}{2}$ and level (relative to 5 **·** divided into two internal
- chambers (interconnected)
- **.** loaded by cyclic internal pressure at ambient temperature $\left| \cdot \right|$

satisfactory prediction of S-N-curve

A continuum damage mechanics model for short fiber reinforced composites Conclusions

continuum damage model for short fiber composites

- **.** linear elasticity model with anisotropic damage
- strain space defined damage formulation based on single damage variable
- **•** relevant damage mechanisms: pore formation and growth

implementation and validation

- **time domain formulation**
- **· user-defined subroutine into commercial FF code**
- **Example 1** almost perfect agreement at coupon level
- **E** satisfactory results under more complex loading conditions

the present work has been funded by AiF under grant no. IGF 20374N in accordance to a resolution of the German Federal Parliament

Bundesministerium für Wirtschaft und Energie

full details can be found in the final report: Spancken, D., Laveuve, D., Dillenberger, F., Abdul Hamid, Z.M., Rohrmüller, B., Findeisen, C., Deissenbeck, M., Stöhr, G., Hohe, J.: Fatigue of short fiber reinforced thermoplastic polymeric materials, Report 1101/2022, Fraunhofer IWM and Fraunhofer LBF, Freiburg and Darmstadt 2022

LBF

Corresponding author

 $\frac{1}{\sqrt{2}}$

PD Dr.-Ing. Jörg Hohe Fraunhofer-Institut für Werkstoffmechanik IWM Wöhlerstr. 11 | 79108 Freiburg | Germany Tel. +49 761 5142 340 | Fax +49 761 5142 501 joerg.hohe@fraunhofer.de

Foto © Oliver Kern, Freiburg