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ABSTRACT 

The application of fibre-reinforced thermoset material systems has been established in the aerospace 

industry, e.g. primary structure on commercial aircrafts. However, there is an increasing interest in 

thermoplastic-based material systems due to their potential for fast forming, weldability, their inherently 

superior fatigue performance, and excellent fire/smoke/toxicity (FST) properties. Current repair 

techniques for thermoset panels are adhesive bonding and mechanical fastening. However, these 

techniques are limited when applied to thermoplastic composites as mechanical fastening leads to stress 

concentrations and localized delamination which is worse for thermoplastic composites. In this paper, 

the optimisation of dissimilar material was carried out using a hybrid genetic algorithm – artificial neural 

network (GA-ANN) model. Due to the complexity of the ultrasonic welding (USW) process, Bayesian 

optimisation is adapted to determine the most suitable ANN architecture to develop a robust model. The 

predictive model is developed to map the relationship between welding energy, vibration amplitude, and 

welding force to the corresponding Lap Shear Strength (LSS). The model was trained on 27 experiments 

using the leave-one-out cross-validation method to measure the model’s ability to generalise. To 

evaluate the optimised joint performance, The bonded joints were tested to determine the tensile load 

carrying capability, and their failure modes were analyzed with the primary aim to develop an efficient 

repair joining methodology. 

 

1 INTRODUCTION 

The use of composite materials is increasing at an unprecedented rate in aerospace, automotive, and 

many other commercial industries. The interest in using thermoplastic composites in primary aircraft 

structures is also increasing, due to their cost-effectiveness in manufacturing. Currently, most primary 

aerostructures are manufactured from thermoset composites and they cannot be joined to thermoplastic 

composites. The current joining methods used are mechanical fastening and adhesive bonding, however 

these current joining techniques employed for composite materials are also labor intensive and 

dependent on operator skill  [1], [2]. A more efficient approach to join composites must be developed 

to improve manufacturing efficiency and the structure’s overall performance.  

 

Ultrasonic welding (USW) is a solid-state joining technique that uses high frequency (10-70 kHz), small 

amplitude vibrations (10-250 μm) which is dissipated as heat at the interface of the specimens being 

joined [3]. USW is an efficient joining process as it does not require any surface preparation or add 

additional mass to the structure. The process can be automated, resulting in faster production times and 

lower labor costs [4]. USW is a technique that can potentially offer an economical and effective 

thermoplastic composites repair process, due to its short welding time, ease of automation, and excellent 

bond quality.  

 

One advantage of using automated techniques for joining is that predictive modelling through ANN can 

be used to predict and optimize the process. USW is a convoluted process that is difficult to optimize, 

therefore, requires extensive data analysis to understand the underlying bonding mechanisms. Joining 



 

dissimilar materials exhibits additional challenges as the underlying bonding mechanisms are complex 

leading to intricate relationships between process input parameters and process performance. Various 

researchers have employed ANN architectures to model complex manufacturing processes. Mongan et 

al., developed an ANN model to predict the performance of USW aluminum joints [5]. The study 

demonstrated a high level of accuracy with a correlation coefficient of 0.9827 between the predicted and 

actual values of lap shear strength (LSS). Zhao et al., developed an ANN to predict the performance of 

USW dissimilar materials (aluminum 6061 to A36 steel) [6]. The study also demonstrated a high level 

of accuracy in its predictions with a correlation coefficient of 0.99842. However, the above studies did 

not employ the model to optimize the process, the models were used to predict random parameter groups.  

 

The experimental study presented in this paper is aimed at investigating ultrasonic welding of dissimilar 

CF/PEKK to co-cured CF/Epoxy. The optimization of dissimilar material was carried out using a hybrid 

genetic algorithm – artificial neural network (GA-ANN) model. Due to the complexity of the welding 

process, Bayesian optimization is adapted to determine the most suitable ANN architecture to develop 

a robust model. The predictive model is developed to map the relationship between welding energy, 

vibration amplitude, and welding force to the corresponding LSS. The model was trained on 27 

experiments using the leave-one-out cross-validation method to measure the model’s ability to 

generalize. To evaluate the optimized joint performance, fracture surface analysis and microscopy were 

performed at the joint interface.  

 

2 MATERIALS AND METHODS 

2.1 Materials and manufacturing 

The materials used in this study are Tenax
®

-E HTS45 carbon fibre reinforced polyetherketoneketone 

(CF/PEKK) and Hexcel IM7 carbon fibre reinforced HexPly
® 

8552 epoxy (CF/Epoxy). Table 

1 summarises the different attributes of CF/PEKK and CF/PEKK prepregs from the supplier’s technical 

data sheet. Additionally, a 125 µm thick Sabic Ultem 1000 polyethermide film (PEI) was used as a part 

of this study. 

 

Table 1: Specifications of material used 

Prepreg Matrix 

content 

Fibre volume 

fraction  

Consolidated ply 

thickness 

 Glass transition 

temperature  

CF/PEKK 34 wt% 60% 0.184 mm  162°C 

CF/Epoxy 34 wt% 60% 0.120 mm  154°C 

 

Flat panels were manufactured using a standard autoclave consolidation process with a stacking 

sequence of [0]12 and [-45/0/+45/90]4S for the CF/PEKK and CF/Epoxy, respectively. The panels were 

vacuum-bagged using high-temperature polyimide bagging material and sealant tape. The consolidation 

temperatures used for PEKK and Epoxy prepregs were respectively 365 °C and 180 °C, while the 

consolidation pressure and dwell duration were 600 kPa and 60 min, respectively. The temperature and 

pressure ramp-up and ramp-down rates were 3 °C/min and 50 kPa/min, respectively. For the CF/Epoxy 

laminates, the PEI film was co-cured as they were compatible with both PEI and PEKK and promotes 

the formation of stronger joints [7]. The consolidation pressure and temperature were monitored 

throughout the processing cycle. The specimens were extracted from the composite panels using an 

abrasive waterjet cutting process. 

 

2.2 Ultrasonic welding 

A 2000 xdt Branson Ultrasonic welder at the University of Limerick was employed for the joining of 

the CF/PEKK to CF/Epoxy.  The output frequency of the machine was 20 kHz and maximum power of 

4000 W. The diameter of the sonotrode was 40 mm. The ratio of the gain for the booster and the horn 

were 1:2 and 1:3, respectively. Figure 1 shows the schematics of the ultrasonic welder and the weld 

specimen geometry.  

https://www.sciencedirect.com/science/article/pii/S1359835X22005401#t0005
https://www.sciencedirect.com/science/article/pii/S1359835X22005401#t0005
https://www.sciencedirect.com/topics/materials-science/polyimide


 

 

 
Figure 1: Schematics of (a) ultrasonic welder (b) joint configuration 

 

For joining of the dissimilar materials, welding optimisation was performed using the energy mode. A 

preselected energy was chosen and input in the machine, when the specimen absorbed the energy, the 

ultrasonics stopped and consolidated for 3 s at a similar force to that of the welding force. A Design of 

Experiment (DOE) was carried out by varying three input parameters: energy, amplitude, and welding 

force. Optimisation studies for ultrasonic welding [8]–[10]  have shown these input parameters being a 

critical in affecting the weld strength of the joint. Preliminary tests were performed to determine the 

minimum and maximum values for the three inputs shown in Table 2. The adherends below the 

minimum and maximum values showed no consolidation or degradation of the material respectively. A 

median level was selected that was between the minimum and maximum level. To derive a relationship 

between the three input parameters, a series of experiments with an array of 33 were performed with 3 

repeats at each parameter and tested for their strength. Table 3 shows the different weld input parameters. 

The lap shear strength (LSS) of the joints were determined using a Zwick 100 kN tensile tester with a 

crosshead speed of 13 mm/min in accordance with ASTM D 5868. 

 

Table 2: Minimum and maximum values for DoE 

Input parameters Minimum Median Maximum 

Welding energy (kJ) 1 1.75 2.5 

Welding force (N) 400 800 1200 

Vibration amplitude (µm) 85 100 115 

 

 

 

 



 

Table 3: DoE input parameters 

Run Order Energy (J) Force (N) Amplitude (µm) 

1 2500 800 85 

2 1750 800 85 

3 1750 1200 115 

4 1750 800 100 

5 2500 800 115 

6 1000 800 115 

7 2500 800 100 

8 1000 800 100 

9 1000 800 85 

10 2500 400 85 

11 1750 400 100 

12 2500 400 115 

13 1000 400 85 

14 1000 400 100 

15 1750 400 115 

16 2500 400 100 

17 1000 400 115 

18 1750 400 85 

19 1750 1200 115 

20 1750 1200 85 

21 2500 1200 115 

22 2500 1200 100 

23 2500 1200 85 

24 1000 1200 85 

25 1000 1200 100 

26 1000 1200 115 

27 1750 1200 100 

 

2.3 Machine learning  

A GA-ANN model was developed to map the convoluted relationship between the input parameters and 

joint performance. The following provides a brief overview of the methods used to develop the GA-

ANN model and is based on [11] where a detailed description of the predictive modelling aspect of this 

study can be found. The hyperparameters of the ANN are key elements affecting the model’s prediction 

performance. Manufacturing processes with complex relationships between input parameters and 

process performance indices require extensive analysis to accurately identify suitable hyperparameters. 

To this end, this study incorporated Bayesian optimisation to efficiently optimise the GA-ANN 

hyperparameters.  The ANN was combined with a GA to mitigate the main drawbacks associated with 

ANN’s, which are the tendency to converge on a local optimum, failing to converge and long 

computational times. The GA was used to optimise the ANN weights before ANN training commenced 

to allow for random exploration of the loss surface and to speed up training times enabling more 

architectures to be explored. A complete description of GA’s, ANN’s, BO, and the flowcharts for 

integrating them can be found in [11].  

 

3 RESULTS AND DISCUSSION 

3.1 DoE for Ultrasonic Welding 

Figure 2(a) shows the average LSS values for the 27 different processing parameters. Run order 27 with 

input parameters of 1750 J, 1200 N and 100 µm resulted in the highest LSS of 26 MPa whereas run 

order 20 with input parameters of 1750 J, 1200 N and 100 µm resulted in the lowest LSS of 2 MPa. A 

visual quality of the joint was performed and was divided into three categories as shown in Figure 2(b). 



 

 

Additionally, the GA-ANN model was trained at six random input parameters ranging between the 

minimum and maximum values. The GA-ANN model was developed with the input parameters and the 

LSS and joint quality. The ANN model identified the optimised parameters to be 1263 J, 842 N and 106 

µm with a LSS of 25.3 MPa. Further experiments were performed with the predicted optimized 

parameters by ANN. The validation test specimens resulted in a LSS of 24.5±0.3 MPa, with a high 

repeatability and showing zero defects. Therefore, the ANN model predicted the parameters with an 

accuracy of 97%.  

 

 

 
Figure 2: (a) Lap shear strength at different parameters (b) Classification of visual inspection 

3.2 Fracture surface analysis 

Figure 3 shows the fracture surface analysis performed on the joint interface. Figure 3(a) shows the 

cross-sectional micrograph of the joint interface. The micrograph shows no signs of degradation or fibre 

failures at the weld interface. Furthermore, the weld interface for the ultrasonic welded joint specimens 

had a uniform thickness of ~200 µm. The reduction in the thickness of the PEI film is due to the squeeze 

flow of the molten energy director as explained in [7]. Figure 3(b), show a fully welded overlap area 



 

with PEI resin film push out observed at the overlap edges. Fibre breakages at the central overlap region 

are observed resulting in an intralaminar failure mode. 

 

 
Figure 3: (a) Cross-sectional micrograph of weld interface (b) Visual inspection of fracture surface 

4 CONCLUSIONS 

A GA-ANN model was created to predict the weld strength and provide the optimised process 

parameters for the ultrasonic welding of CF/Epoxy to CF/PEKK. The GA-ANN moel predicted 

with an accuracy of 97% with the predicted optimized strength of 25.31 MPa and a validation 

strength of 24.46 MPa. The micro-section and the fracture surface of the CF/Epoxy to 

CF/PEKK showed a strong adhesion between the adherends. The study shows that a GA-ANN 

model can be used for accurate strength prediction for fusion joining processes, reducing the 

cost of manufacturing and testing.  
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