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ABSTRACT 

The aim of the study is to improve the predictive capacity of a Finite Element tool in relation to a 

rheological thermo-chemo-viscoelastic constitutive model. This enhancement specifically focuses on 

accurately capturing the Process Induced Deformations (PID) resulting from the polymerization of 

thermoset composite matrix. These deformations are due to the internal residual stress that arises from 

the material's inherent anisotropic properties, specifically the coefficients of thermal expansion and 

chemical shrinkage. The focus of the study is to accurately model the cure polymerization behaviour, 

which is known to have a significant impact on manufacturing defects. To account for the effect of 

process variables, such as maximum curing temperatures and temperature rates, a non-parametric neural 

network model is implemented instead of a parametric diffusion cure-kinetics model. Such model is 

trained using Differential Scanning Calorimetry characterization tests and is interfaced with the classical 

visco-elastic constitutive model to predict the evolution of thermoset resin states, which is evaluated 

using two cure state variables: degree of cure and glass transition temperature. This improved prediction 

of state transitions results in precise evaluations of internal residual stresses, leading to accurate PID 

predictions. Anisotropic properties of carbon/epoxy woven composite at different states of cure are used 

for the numerical analyses. Finally, the enhanced methodology is applied to a case study of a Z-shaped 

thermoset part, and the predicted PID closely associates with the experimental measures. 

 

1 INTRODUCTION 

   The aerospace industry has widely utilized thermosetting composite materials due to their high 

strength to weight ratio. However, it has been observed that multiple iterations are required to establish 

an efficient manufacturing process due to defects in the composite material (i.e., resin and fibre) and 

mould characteristics, as noted in [1-2]. During the manufacturing phase, composite parts undergo 

distortion and attain internal residual stresses as they are processed within the mould. Thus, it is crucial 

to have reliable numerical tools for designing and optimizing ideal manufacturing conditions to produce 

parts with fewer process-induced defects. 

 

      Various factors at different mechanical levels contribute to the development of manufacturing 

defects caused by internal residual stress, as discussed in [3-4]. The curing process of thermosetting 

resin, which undergoes transitions from viscous to rubbery to glassy states, leads to internal residual 

stresses and deformations due to the resin's thermal and chemical behaviour, [5]. Thermal stress fields 

arise from the difference in coefficients of thermal expansion (CTE) between the resin and the fibre, as 

demonstrated numerically, [6], and careful consideration of this property is necessary to minimize the 
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deformations in the final part. Chemical shrinkage associated with coefficients of chemical shrinkage 

(CCS) also contributes to residual stresses by reducing the free volume of the resin during the curing 

process, resulting in uniform tensile residual stresses distributed throughout the composite laminate, [7]. 

Deformations are additionally limited by contact with the mould during curing, further contributing to 

the development of internal residual stresses. 

 

     Finite Element (FE) analyses coupled with mechanical constitutive models is effective for analysing 

the different mechanisms during manufacturing, with various models implemented over the years, 

including elasticity and visco-elasticity. Although fully viscoelastic models provide accurate cure 

behaviour, they require extensive material characterization and come with high computational costs and 

memory requirements. The Cure Hardening Instantaneously Linear Elastic (CHILE) model provides a 

less complex alternative, with modulus changes as a function of cure state. However, modelling the 

evolution of cure state during manufacture remains a big question due to uncertainties in resin thermal 

history, formulations, and characterization boundary conditions and has received limited attention, [8-

10]. 

 

     In this study we propose to interface a non-parametric model with the user material subroutine of the 

numerical FE tool and hence, alleviating the burden associated with choice of cure-kinetics model and 

its optimized parameters. Moreover, accurate cure behaviour is modelled, leading to closer Process 

Induced Deformations (PID) predictions. Section 2 describes the theory and methodology associated 

with modelling of cure behaviour, the viscoelastic constitutive model, the Differential Scanning 

Calorimetry (DSC) characterization tests and the non-parametric neural network model. In Section 3, 

the performance of the non-parametric model is evaluated and a case study on PID prediction 

comparison for the case study of Z-shaped thermoset part using different constitutive models is made. 

Finally, in Section 4, the conclusions, and remarks from the study are summarized. 

 

2 THEORY AND METHODOLOGY 

2.1 Cure kinetics and associated state variables 

The crucial properties relevant to the curing and modelling of residual stresses are a degree of cure, 

instantaneous glass transition temperature, expansional strains, coefficients of thermal expansion and 

chemical shrinkage and composite laminate properties. The degree of cure, X introduced previously is 

the ratio between heat released at a time over the total amount of heat released during the entire curing 

process. The cure kinetics model, [28] is implemented to describe the development of cure in terms of 

polymerization rate, which is given by, 

dX

dt
=

K Xm (1-X)n

1 + eC(X-Xc)
 

where, K = Ae-ΔE/RT  and  Xc= ι0 - (ιtT) 

(1) 

where K is the rate constant, R is the molar gas constant, A is the exponential law coefficient, E is the 

activation energy, m and n are the first and second exponential constants, C is the diffusion constant, 

ι0 is the critical X at the initial time and ιt is a constant accounting for the increase in X with temperature, 

T. The critical points in the cure evolution are Xgel and Xvitr defining the transition between different 

material states. The transition from rubbery to glassy state is understood to occur when the process 

temperature matches with the instantaneous glass transition temperature, Tg  which is defined as a 

function of degree of cure. The generic function used is the DiBenedetto's relationship, [11], which is 

given by,  

Tg - Tg∞

Tg∞ - Tg0

=
λX

1 - (1-λ)X
 

 

(2) 
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Tg0 and Tg∞ are the glass transition temperature at the gel point and vitrification point respectively, 

and λ is the material dependent parameter when fitting equation to experimental measurements. The 

evolution of cure-state variables for a generic case of two-dwell Manufacturing Recommended Curing 

cycle (MRCC) with temperature rates, ri=1,2..,5 are shown in Fig. 1. The anisotropic properties associated 

with the material are different in different states and it is crucial to model such state transitions to predict 

the PID accurately. 

 

 

 
 

Figure 1: Evolution of cure state variables and a generic curing temperature cycle with associated 

process condition variables 

 

 

2.2 Visco-elastic constitutive model 

As anticipated in the introduction, the state-of-the-art solution for predicting the PID are FE tools 

with thermo-viscoelastic constitutive models. The common material behaviours used to assess the 

defects are the Cure Hardening Instantaneous Linear Elastic (CHILE) model and the non-linear 

viscoelastic model. The classic case of CHILE model proposed, [14-15] where a path dependence on 

cure state variables is exploited within the study. A model describing CHILE, or the non-linear 

viscoelastic behaviour of the partially cured resin, accounts for the curing temperature, instantaneous 

glass transition temperature and curing time. The instantaneous relaxation modulus corresponding to the 

Maxwell’s element within the viscoelastic model of the partially cured resin is dependent on the reduced 

time, which is in turn dependent on the curing state variables. The thermo-viscoelasticity for anisotropic 

and thermo-chemo-rheological materials is simply written in integral form as a function of instantaneous 

relaxation modulus, C is given as,  

σ(t) = Cε + ∫ δC(ψ - ψ')
∂(ε - εE)

∂τ

t

0

 ∂τ 
(3) 

C = C∞+ ∑ Cn e((-t)ρn)

N

n=1

 ∀ X ≥ Xgel  else C = 0 

(4) 

 

where C is the linear elastic Hooke tensor, δC is independent relaxation function for N Maxwell 

elements, εE is the expansional strain corresponding to thermal expansion and chemical shrinkage,  C∞ 

is the fully relaxed modulus of uncured resin, Cn are the spring constant, ρn are the relaxation times, ψ  
and ψ' are the reduced time corresponding to spring and dashpot dependent on the curing state variables 
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respectively and is defined as, 

ψ = ∫
1

aT
dt'

t

0

 ; ψ' = ∫  
1

aT
dτ'

t

0

 
(5) 

 

The term aT corresponds to shift factor in the constitutive model and is assumed to be taken as a 

function approaching 0 and infinity in rubbery and glassy state, respectively. With this assumption, the 

Hooke tensor in the rubbery state is fully relaxed, i.e., Cr = C∞ while in the glassy state, the Hooke 

tensor is defined as Cg= C∞+ ∑ Cn
N
n=1 . The stress field as a function cure state variables attained upon 

simplification of equations (3-5) is given by, 

σ = {
Cr(ε - εE), ∀ T ≥ Tg(X) 

Cg(ε - εE) - (Cg - Cr)(ε - εE)|t = tvitr
, ∀  T < Tg(X) 

 
(6) 

 

The incremental stress state formulation of the equations (6) is implemented within the FE solver, 

[25]. Corresponding to the constitutive model, the material is assumed to be fully relaxed during the 

rubbery and viscous states. Meanwhile, the stress states within the glassy state are incrementally stored. 

Such “locked-in” stresses are finally releases upon demoulding and completion of curing process to give 

PID in form of distorted shapes. 

 

2.3 Characterization tests and process conditions variables 

Three DSC tests corresponding to temperature cycle at three different temperature rates, r at 1.5 ° 

C/min, 0.55 ° C/min and 0.5 ° C/min, with isothermal dwells at 180 °C, 175 °C and 185 °C, respectively 

are studied for the epoxy resin carbon fibre, see Fig. 2. A few milligrams of the resin sample are 

subjected to the prescribed curing temperature cycle and the heat released by the sample during the 

curing process and the heat absorbed by the sample are recorded. 

 

 

 
 

Figure 2 : Different curing conditions and its associated X 

 

 

The enthalpy of reaction (during and at the end of cure cycle) and the residual enthalpy after the 

production cycle can be determined with such characterization test. The evolution of the resin reaction 

rate, 
dX

dt
 as a function of time (and temperature) is the ratio of enthalpy during the reaction to the total 

reaction enthalpy, see Fig. 3. 
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Figure 3: Different curing conditions and its associated 
d𝑋

dt
 

 

 

 
 

Figure 4: Different curing conditions and its associated Tg 

 

 

In the early stages of the cure, the reaction rate is relatively slow due to the presence of unreacted 

functional groups within the resin. As the cure proceeds, the number of unreacted functional groups 

decreases, and the reaction rate increases. Moreover, the sample undergoes a change in heat capacity 

due to a change in its molecular mobility, which results in a characteristic step-change in the DSC curve. 

This step-change in heat capacity is used to determine the  Tg of the material, refer Fig. 4. Eventually, 

the reaction rate slows down again as the resin approaches full cure. To confirm the residual cross-

linking enthalpy and to be sure that the sample is cured completely, the test is performed again for the 

same cycles.  

 

2.4 Non-parametric cure-kinetics model 

To precisely model the curing behaviour, the cure state variables have been solved for each state 

separately in the recent past, [12]. However, this approach requires the use of a larger number of 

constants for modelling the cure behaviour. Alternatively, an efficient cure kinetics model which 

accounts this phenomenon with a help of diffusion control, [13] and is used for 8552/AS4 unidirectional 

composite material as introduced earlier. The diffusion cure-kinetics constants from [16] when 

implemented do not correlate accurately with the observed cure reaction rates at different process 

conditions and do not account for the process conditions variables. Moreover, the activation energy, E 

and reaction rate, m from equation (1) is observed to have influence on reaction rate peaks for the 

repeated tests on Hexcel RMT6 epoxy resin, [17]. Hence, there is a requirement to treat the model 

parameters stochastically to account for boundary condition uncertainties during curing process. 

Unfortunately, the lack of prior knowledge on model parameters for different resin poses challenges for 

stochastic simulations. Moreover, if the resin is expected to undergo significant changes in its chemical 
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composition, more complex cure kinetics formulations are required, [18-19].  

 

Hence, there is need for simpler non-parametric models to predict the cure behaviour. Such model is 

introduced in form of neural networks, [20-22]. It is a supervised machine learning model which allows 

to capture the non-linear relationships between the input and the output variables without assuming a 

specific functional form like an Arrhenius model, refer equation (1). This makes it an efficient tool for 

predicting the cure kinetics and glass transition temperature of polymeric resin based on available DSC 

characterization tests. The neural network model is implemented to predict the 
dX

dt
 and 𝑇𝑔, given the 

inputs, X, T and r at a given time. The model takes into consideration the different process conditions 

below 3 °C/min and maximum curing temperature of 180 °C with standard deviation of 4.47 °C. The 

architecture of the proposed model is shown in Fig. 5.  

 

 

 
 

Figure 5: Non-parametric neural network architecture for predicting cure state variables. The ith neuron 

in the jth hidden layer with its associated weights, biases, and activation function is shown. 

 

 

Each of the three DSC tests consists of data samples of which 75%, 15% and 10% are used for 

training, validating, and testing the neural network model respectively. The normalization of these input 

features between 0 and 1 is done to associate similar weights and this, in turn accelerates the training 

algorithm. The network characteristics are derived by employing a training algorithm that utilizes a 

gradient descent approach to minimize the error between the network's predictions and the expected 

outputs obtained from the second set of DSC tests conducted under the same curing boundary conditions. 

The minimization function is executed with respect to the vector, containing the weights and biases. The 

characteristics of the optimized neural network model are given in Table 1. The model is used instead 

of parametric diffusion cure-kinetics and DiBenedetto's models, considering the dependency on the 

process condition variables. 

 

 

Network 

structure 

Activation functions RMSE 

3-13-13-2 Sigmoid (Hidden layers, fi=1,2) Training set (0.9952) 

 Linear (Output layer, f3) Validation set (0.9929) 

  Test set (0.9944) 

 

Table 1: Optimized non-parametric neural network characteristics 
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3 RESULTS AND DISCUSSIONS 

3.1 Performance of the non-parametric neural network model 

Comparison of predictions between neural network and diffusion cure-kinetics models is shown in 

Fig. 6. Authors of [23] implemented the diffusion cure-kinetics model with adjusted model parameters. 

These were determined using a regression procedure to minimize the error between experimental data 

and model predictions, in the least squares sense. Three pairs of additional DSC tests based on pure resin 

and on epoxy resin carbon fibre subject to partial curing temperature cycles were used for such procedure 

in addition to the existing dataset. The peak and post summit regime of the 
dX

dt
 evolution, in the case of 

a 1°C/min temperature rate with an isothermal dwell at 180 °C, [26-27] shows a closer correlation to 

experimental measurements according to the non-parametric neural network model. While the 

parametric model captures the cure behaviour with less accuracy, a trained neural network-based model 

is observed to be the better choice due to its capability of handling non-linear relationships accurately 

at different boundary conditions. This allows to model the thermo-chemical analysis accurately because 

of process variables uncertainties on the thermoset part which is in turn dependent on factors such as 

part thickness, rate of polymerization and heat transfer coefficient of the oven. This is applicable in 

scenario as shown in Fig. 1 where the actual temperature profile is different from the control cure 

temperature with modified temperature rates. 

 

 

 
 

Figure 6: Comparison of performance of neural network interfaced and diffusion cure-kinetics 

interfaced models to predict the evolution of reaction rate, 
𝑑𝑋

𝑑𝑡
 for the case of r = 1 ° C/min, with 

isothermal dwell at 180 °C 

 

 

3.2 Case Study: Numerical analysis on PIDs of Z-shaped thermoset part 

The materials of interest are the unidirectional and woven carbon/epoxy prepregs AS4/8552 

produced by Hexcel, [24]. A Z-shaped part consisting of a stacking sequence, [±45°/0-90°]4s made of 

15 plies are manufactured on an Invar mould with a negligible coefficient of thermal expansion. The 

geometry of Z-shaped part is as shown in Fig. 7. The part is 3 mm thick and 150 mm long in Z-axis. 

Cure cycle applied in numerical analysis comprises of a heating ramp with temperature rate of 1.5 

°C/min from room temperature to 180 °C. The part is maintained at an isothermal dwell at this 180 °C 

for 120 minutes before cooling back to the room temperature with rate of 2 °C/min. A pressure of 7 bars 

is applied on Z-shaped part throughout whole duration of cure cycle. An autoclave boundary condition 

is adopted to mimic the real experimental scenario more closely, where pressure is applied to keep the 

part in place against the mould, preventing the free closure of curved sections in the Z-part. The X, Y, 

and Z in the local coordinate system of the FE model indicate the warp, weft, and through thickness 

directions, respectively. The thickness, and orientations of the plies are specified, and the draping 

process is modelled using the Simulayt Composite Modeller. Subsequently, to achieve the 3D 

geometrical representation, the defined shell geometry is extruded and meshed in the thickness direction. 
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The numerical model consists of a 3D representation of the part, comprised of 19665 hexahedral C3D8 

elements with linear geometry and assigned local orientations. The mould, on the other hand, is 

represented as a rigid component, using 2296 quadrilateral R3D4 elements with linear geometry. 

 

 

 
 

Figure 7: 3D geometry of the Z-shaped thermoset 8552/AS4 part 

 

 

In the FE constitutive model, the thermosetting material's behaviour is assumed to be orthotropic, 

and the material properties are considered constant for every state during the curing process. The resin 

fibre woven matrix is assumed to be homogeneous at ply-scale level and the orthotropic properties are 

listed in Table 2, [23]. The Z-shaped part is produced using an Invar tool which has a negligible CTE. 

Additionally, a frictionless contact condition is assumed between the part and the tool. The numerical 

FE analysis follows a linear viscoelastic constitutive model with superposition between cure state 

variables and process conditions. 

 

 

Properties SI Unit Rubbery state Glassy state 

Modulus in warp and weft direction MPa 66190 68000 

        Through thickness Modulus MPa 165 10000 

In plane shear Modulus in off-axis 

direction 

MPa 44.3 5000 

Out of plane shear Modulus MPa 42.9 4500 

In plane (between warp and weft 

direction) Poisson's ratio 

- 0.001 0.220 

Out of plane (between warp and through 

thickness direction) Poisson's ratio 

- 0.002 0.072 

Out of plane (between weft and through 

thickness direction) Poisson's ratio 

- 0.833 0.490 

CTE in warp and weft directions 1/°C -7.11x10-7 2.50x10-7 

CTE in through thickness direction 1/°C 3.5x10-4 5.88x10-4 

CCS in warp and weft directions - 9.31x10-4 5.29x10-4 

CCS in through thickness direction - -3.45x10-2 -2.53x10-2 

 

Table 2: Anisotropic properties associated with 8552/AS4 material with fibre volume fraction of 60% 

at different states 
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Fig. 8 illustrates the comparison of residual stress field in X direction between neural network and 

diffusion cure-kinetics interfaced constitutive models. The stress field before the cooling phase, after 

the cooling phase and upon de-moulding are compared. The variation in localized stress fields within 

the curved sections prior to the cooling phase is approximately between 42% to 44%. Such differences 

in numerical predictions relies on accurate modelling of the cure behaviour.  

 

 

 
 

Figure 8: Comparison of residual stress in the X axis (scaling deformation factor: 5.0) 

 

 

The evolution of expansional strains on an element of the front flange in Z-shaped part during the 

curing process are illustrated in Fig. 9. According to equation (6), during the rubbery state, the 

constitutive model assumes the material to be fully relaxed. Hence, the "locked-in" residual stresses 

developed is released to attain deformation during the cure. On the other hand, in the glassy state, the 

"locked-in" residual stress is stored incrementally and released upon de-moulding. The percentile 

difference in strain in the warp and through thickness directions with new approach upon de-moulding 

over the curing process is 16.98% because of earlier onset of vitrification phenomenon. This generates 

additional stresses which eventually is released to attain the PID in form of spring-in angles A1 and A2. 

 

 
 

Figure 9: Comparison of strains in the warp, weft, and through-thickness directions on the flange of Z-

shaped part 
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Validation of the internal residual stress field is achieved through a comparison of process induced 

defects. The experimental measurement of process induced defects using the laser scanner and 

subsequent analysis of the point clouds can provide valuable information on the quality and accuracy of 

the manufacturing process. With the case study, process induced defects in form of spring-in angles 

were measured using the point clouds acquired with Nikon MMDx100 laser scanner subject to post-

processing, [23]. These points are used to determine a map of deviations between the initial reference 

and distorted geometry. Such experimental measures are acquired with 0.2° standard deviation. 

Comparison of spring-in angles, A1 and A2 post de-moulding between the viscoelastic models interfaced 

with cure-kinetics model and neural network model is shown in Fig. 10.  

 

 

 
 

Figure 10: PID prediction (spring-in angle measure) comparisons 

 

 

With the PID predictions in form of spring-in angles on the curved sections, the proposed numerical 

analysis gives closer prediction with difference of 3.46 % for angle A1 (fibre-rich zone) in comparison 

to difference of 11.39 % for angles A2 (resin-rich zone). The computational costs and memory 

requirement with the proposed approach is fractionally higher (1.08 times) because of non-linearity of 

activation functions associated with the neural network model. 

 

4 CONCLUSIONS 

Defects and internal residual stress unavoidably occur during manufacturing, attributed to the thermal 

expansion and chemical shrinkage phenomenon associated with thermoset materials. Hence, it is 

essential to accurately model the cure behaviour to minimize PID and ensure the production of high-

quality thermoset composite parts. In this study, a numerical model is utilized to examine the residual 

stress fields in a thermosetting composite under autoclave boundary conditions. The model relies on 

accurately capturing the transitions between the viscous, rubbery, and glassy states, considering the cure 

behaviour of the resin and fibre. To capture the complex and non-linear relationships between cure 

kinetics and process variables, a non-parametric neural network model is employed. 

 

The study provides insights into the influence of process temperature rates (below 3 °C/min) on the 

evolution of cure state parameters for a specific woven carbon/epoxy prepreg, AS4/8552. Additionally, 

the non-parametric model is integrated with the viscoelastic constitutive model to make precise 

predictions of process-induced defects in the form of spring-in angles. Furthermore, the study offers a 

deeper understanding of the nature of the residual stress field in the case of a Z-shaped thermoset part. 

This modelling approach proves particularly useful when dealing with thick thermosets experiencing 

different temperature gradients between the control temperature and the part temperature. 

 

The information obtained from the neural network-interfaced constitutive model and the validated 
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residual stress field can be applied in damage propagation analyses, enabling further enhancements in 

the manufacturing process. This approach provides an initial accurate estimation of defects and 

facilitates the optimization of temperature profiles to reduce risks and enhance manufacturing quality. 
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