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ABSTRACT 

Most of the available functional form solutions of anisotropic plates are available for cases involving 
simple boundary conditions such clamped and simply supported edges. The proposed method which is 
based on the well-known Ritz method offers an alternative semi-analytical solution in terms of simple 
polynomials. As per Ritz method, the trial functions are required to satisfy the essential (geometric) 
boundary conditions and therefore free edges can be accommodated by the method. However, large 
number of polynomials is needed in order to get the required convergence which cannot be handled by 
the standard Ritz method due to the huge number of symbolic integrals to be computed. This difficulty 
is overcome by casting the method in a matrix form the elements of which are derived using indicial 
notation and integrated using a symbolic Mathematica code. The code is capable of accommodating a 
large number of polynomials as required by the accuracy and convergence of the solution. Several 
numerical examples are presented to verify the accuracy and efficiency of the proposed method. 

1 INTRODUCTION 

Laminated anisotropic plates are increasingly being used in structural applications due to their high 
strength-to-weight, stiffness-to-weight ratios, durability, and design flexibility. However, the analysis 
of laminated anisotropic plates exhibits complexity owing to varying the material properties of such 
plates through the 3D space. The most popular application of anisotropic plates is the laminated 
composite plates made of fibers reinforced laminas where the anisotropy level depends on the fibers 
orientation angle and the stacking sequence [1]–[4]. The classical laminate plate theory (CLPT), which 
neglects the out-of-plane strains effect, was introduced for the bending analysis of composite laminated 
plates [3], [5]. The CLPT was proven to be adequate for predicting the behaviour of thin laminated plates 
as compared to the theory of elasticity [6]–[8]. The governing differential equations of an angle-ply 
composite plate having two opposite simply supported edges had been reduced to ordinary differential 
equations by using the Fourier series expansion of load and deflections [9], [10]. Ashton presented the 
governing differential equations [11] and energy formulation [12], [13]  for the analysis of linear elastic 
bending of anisotropic composite plate without considering the in-plane displacements of the midplane. 
Also, Wang et al. [14] neglected the in-plane displacements of the midplane in the formulation of strip 
element method (SEM) to solve the bending problem of symmetric laminated composite plates in the 
sense of CLPT. Numerical methods were also implemented in solving anisotropic plate bending problem 
such as finite element method [15], [16], dynamic relaxation method [17], [18], boundary element 
method [19].  

Although, the linear bending behaviour of composite laminated plates has been extended to account 
for large deflection [20]–[26], the given examples addressed special cases of isotropic, orthotropic, 
antisymmetric and symmetrical angle-ply laminates. Furthermore, some of them reported the results of 
deflection only. 

 
Energy methods [27]  have the advantages of providing the solution in a continuous functional form 

which is more suitable for optimization and design purposes. Ritz method, in particular, has a further 
advantage over other energy methods in handling plate with mixed boundary conditions [28]–[31]. 
However, as with any approximate method, Ritz method is not free from disadvantages. Particularly 
when applied to the present problem, the direct application of the method involves symbolic integration 
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of many and lengthy expressions due to the aspect of material anisotropy. To overcome these 
computational efforts, and at the same time preserve the advantage of the Ritz method in obtaining the 
solution in a functional form, an automated systematic approach was proposed for the large deflection 
of anisotropic composite plates [32].  

In this paper, the automated Ritz method is proposed for the linear analysis of laminated anisotropic 
plates under lateral load with mixed boundary conditions.  First, the indicial notations are employed to 
derive the constitutive equations and the resulted equations from the minimization of potential energy. 
The obtained equations are cast it in a matrix-form which are, then, encoded in a Mathematica program 
that automates the solution for arbitrary trial approximation functions. Using the proposed approach, the 
solution starts by approximating the plate displacements u, v, and w by trial functions satisfying the 
geometric boundary conditions (displacements/slopes) with unknown constants. These expressions are 
then substituted in the matrix form to solve for the unknown constant and, hence, the complete solution 
of the problem. To test the adequacy and accuracy of the proposed formulation and the developed code, 
two numerical examples of laminated angle ply plates are solved, and their solutions are compared with 
the finite element results obtained by ABAQUS. The results of the comparison confirm that the proposed 
method is accurate and efficient in predicting the bending behaviour of laminated anisotropic plates. 
 
2 CONSTITUTIVE RELATIONS AND POTENTIAL ENERGY 

Consider a rectangular laminated anisotropic plate which is composed of fibers reinforced layers. 
The laminated anisotropic plate with a total thickness (t) and each layer or ply has its engineering 
constants in its local coordinate axes making an angle 𝜃 with the positive x-axis in the global coordinate 
system as shown in Figure 1. In the sense of CLPT, the laminated anisotropic plate is modeled as an 
equivalent single layer (ESL) oriented at the mid-surface. The stiffness rigidities components of the 
resultant ESL are evaluated by integrating the reduced stiffness matrix [Q] over the plate’s thickness 
which depends on the material’s elastic properties and defined in different standards textbooks [3], [4], 
[15], [33]. The reference datum plane is the mid-surface plane of the plate at 𝑧 = 0 and the location of 
the top and bottom surfaces of the 𝑘!"   layer is defined by ℎ#$% and ℎ#  from the reference surface, 
respectively. Consequently, the thickness (𝑡#) of the  𝑘!"  ply is evaluated by subtracting the location 
of the surface (ℎ#$%) from the location of the bottom one (ℎ#), where 𝑘 = 1,2,3, … , 𝑛. The components 
of the stiffness matrices are influenced by the orientation and stacking sequence of the individual layer 
and can be evaluated as follows: 

𝐴&' =	23𝑄5&'6	#(ℎ# − ℎ#$%)
(

#)%

 (1.a) 

𝐵&' =
1
2
	23𝑄5&'6	#9ℎ#* − ℎ#$%* :
(

#)%

 
(1.b) 

𝐷&' =
1
3
	23𝑄5&'6	#9ℎ#+ − ℎ#$%+ :
(

#)%

 
(1.c) 

where [𝑄5&']# is the transformed components of the reduced stiffness matrix [Q] of the 𝑘!" layer.   
 



 
 

 
Figure 1: (a) Laminated anisotropic plate; (b) Locations of plies in the laminated plate 

 
 The strains at any point of the laminated anisotropic plate can be expressed in terms of displacements 

(u, v, and w) as follows:   
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where the subscript proceeded by a comma represents differentiation; 𝜀,., 𝜀-.		and	𝛾,-. represent 
the strains of a point at the mid-surface due to membrane effect; and 𝜅, , 𝜅-		and	𝜅,- represent the strains 
due to curvature at a point across the thickness. 

The resultant in-plane forces (𝑁, , 𝑁- , 𝑁,-)  and bending moments (𝑀, , 𝑀- , 𝑀,-)are expressed as in 
Eq. (3). 
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The potential energy (Π) of the anisotropic composite plate under lateral load is expressed by: 
Π = 𝑈 −𝑊 (4) 

 

where 𝑈 is the total strain energy stored in the plate (Eq. 5) and 𝑊 is the work done by the applied 
load (Eq. 6). 

𝑈 =
1
2
	\9𝑁,	𝜀,. +𝑁-	𝜀-. +𝑁,-	𝛾,-. +𝑀,	𝜅, +𝑀-	𝜅- +𝑀,-	𝜅,-:𝑑𝐴

0
 (5) 

W =\𝑞	𝑤	𝑑𝐴
0

 (6) 

Substitution of the involved terms from Eqs. (2 and 3) into Eq. (5), and rearrangement yields the total 
strain energy as follows: 

𝑈 = 𝑈1 + 𝑈2 + 𝑈3 (7) 
where 𝑈1, 𝑈2, and 𝑈3 represent the strain energy due to pure membrane effect (Eq. (8)), coupling 

effect (Eq. (9)), and bending effect (Eq. (10)), respectively, 
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3 FORMULATION OF RITZ METHOD IN A MATRIX-FORM 

An approximate solution can be revealed for a laterally loaded laminated anisotropic plate bending 
problem utilizing Ritz method. The formulation of Ritz method based on the principle of minimum 
potential energy starts by selecting shape trial functions (Eq. (11)) to approximate the solutions for 𝑢, 
𝑣, and 𝑤. The trial shape functions 𝜙& , 𝜒' and 𝜓# are required to satisfy only the essential (geometric) 
boundary conditions, i.e. deflections and/or slopes.  

𝑢(𝑥, 𝑦) = 𝐶&4𝜙&(𝑥, 𝑦), 𝑖 = 	1, 𝑁4
𝑣(𝑥, 𝑦) = 𝐶'5𝜒'(𝑥, 𝑦),									𝑗 = 	1, 𝑁5
𝑤(𝑥, 𝑦) = 𝐶#6𝜓#(𝑥, 𝑦),						𝑘 = 	1, 𝑁6

h (11) 

where 𝑁4, 𝑁5, and 𝑁6 are the number of terms for each of the three trial functions 𝜙& , 𝜒' and 𝜓#, 
respectively; and 𝐶&4, 𝐶'5 and 𝐶#6	are the corresponding unknown coefficients to be determined based on 
the principle of minimal potential energy. 

The indicial notation is utilized to perform the required derivations of Ritz method starting by 
substitution of the approximated trial functions (Eq. (11)) in Eqs. (8-10). Then, carrying out the 
differentiation of Eq. (4) with respect to each of the unknown coefficient yields: 

 
Π,7!" = U,7!"

1 + U,7!"
2 + U,7!"

3 −𝑊,7!" = 0,											𝑟 = 	1, 𝑁4
Π,7#$ = U,7#$

1 + U,7#$
2 + U,7#$

3 −𝑊,7#$ = 0,												𝑠 = 	1, 𝑁5
Π,7%& = 𝑈,7%&

1 + 𝑈,7%&
2 + 𝑈,7%&

3 −𝑊,7%& = 0,												𝑡 = 	1, 𝑁6⎭
⎬

⎫
 (12) 

 
Caring out the lengthy derivations of Eq. (12) as presented earlier by the authors [29] for isotropic 

plates with modification to consider only the linear behavior and to account for the coupling effect in 
this case of a laminated anisotropic plate. This produces zero energy differential terms as well as linear 
functions of the unknown constants, yielding the following linear system of equations: 

 
U,7!"
1 + U,7!"

2 = 0,																																							𝑟 = 	1, 𝑁4
U,7#$
1 +U,7#$

2
9
= 0,																																								𝑠 = 	1, 𝑁5

U,7%&
3 + U,7%&

2 = 𝑊,7%& ,																															𝑡 = 	1, 𝑁6⎭
⎬

⎫
 (13) 

 
Carrying out the lengthy differentiations of Eqs. (13) results the final matrix form formulation of Ritz 

method, i.e.:  

𝑈1 =
1
2
\ l𝐴%%	𝑢:, + 𝐴**	𝑣:- + 2𝐴%*	𝑢:,	𝑣:- + 𝐴//(𝑢:- + 𝑣:,)*
0

+ 2𝐴%/	𝑢:,9𝑢:- + 𝑣:,: + 2𝐴*/	𝑣:-9𝑢:- + 𝑣:,:m 	𝑑𝐴 

(8) 

𝑈3 =
1
2
\9𝐷%%𝑤:,,* + 𝐷**𝑤:--* + 2	𝐷%*	𝑤:,,𝑤:-- + 4𝐷//𝑤:,-* + 4	𝐷%/	𝑤:,,𝑤:,-
0

+ 4	𝐷*/	𝑤:--𝑤:,-:𝑑𝐴 

(9) 

𝑈2 = −\ o𝐵%%	𝑢:,	𝑤:,, + 𝐵**	𝑣:-	𝑤:-- + 𝐵%*9	𝑢:,	𝑤:-- + 𝑣:-	𝑤:,,:
0

+ 2	𝐵//	𝑤:,-(𝑢:- + 𝑣:,) + 𝐵%/ l2𝑢:,	𝑤:,- +𝑤:,,9𝑢:- + 𝑣:,:m

+ 𝐵*/ l2𝑣:-	𝑤:,- +𝑤:--9𝑢:- + 𝑣:,:mp 	𝑑𝐴 

(10) 



 
 

q
𝐾%%;& 𝐾%*

;' 𝐾%+;#

𝐾*%<& 𝐾**
<' 𝐾*+<#

𝐾+%!& 𝐾+*
!' 𝐾++!#

s t
𝐶&4

𝐶'5

𝐶#6
u = q

0
0

\𝑞	𝜓!	𝑑𝐴
0

s (14) 

 
where the components of the developed matrix form in (Eq. (14)) are presented by the expressions 

listed in Eqs.(15a-i) and the indices are according to: 
 

𝑟, 𝑖 = 1,𝑁4          𝑠, 𝑗 = 	1, 𝑁5     and         𝑘, 𝑙,𝑚, 𝑡 = 	1, 𝑁6 
 

𝐾%%;& =\9𝐴%%𝜙& ,, 𝜙; ,,+ 𝐴//	𝜙& ,- 𝜙; ,-+ 𝐴%/	3𝜙& ,, 𝜙; ,-+ 𝜙& ,- 𝜙; ,, 6:𝑑𝐴
0

 (15.a) 

𝐾%*
;' =\9𝐴%*	𝜒' ,- 𝜙; ,,+ 𝐴//	𝜒' ,, 𝜙; ,-+ 𝐴%/	𝜒' ,, 𝜙; ,,+ 𝐴*/	𝜒' ,- 𝜙; ,- :𝑑𝐴

0
 (15.b) 

𝐾%+;# = −\9𝐵%%	𝜙; ,, 𝜓# ,,,+ 2	𝐵%*	𝜙; ,, 𝜓# ,--+ 2	𝐵//	𝜙; ,- 𝜓# ,,-
0

+ 𝐵%/	3𝜙; ,- 𝜓# ,,,+ 2𝜙; ,, 𝜓# ,,- 6 +	𝐵*/	𝜙; ,- 𝜓# ,-- :𝑑𝐴 
(15.c) 

𝐾*%<& =\9𝐴%*		𝜙& ,, 𝜒<,-+ 𝐴//	𝜙& ,- 𝜒<,,+ 𝐴%/	𝜙& ,, 𝜒<,,+ 𝐴*/	𝜙& ,- 𝜒<,- :𝑑𝐴
0

 (15.d) 

𝐾**
<' =\9𝐴**	𝜒' ,- 𝜒<,-+ 𝐴//	𝜒' ,, 𝜒<,,+ 𝐴*/3	𝜒' ,, 𝜒<,-+ 𝜒' ,- 𝜒<,, 6:𝑑𝐴

0
 (15.e) 

𝐾*+<# = −\9𝐵**	𝜒<,- 𝜓# ,--+ 2𝐵%*	𝜒<,- 𝜓# ,,,+ 2𝐵//	𝜒<,, 𝜓# ,,-+ 𝐵%/	𝜒<,, 𝜓# ,,,
0

+ 𝐵*/	3𝜒<,, 𝜓# ,--+ 2𝜒<,- 𝜓# ,,-	6:𝑑𝐴 
(15.f) 

𝐾+%!# = −\9𝐵%%	𝜙# ,, 𝜓! ,,,+ 2	𝐵%*	𝜙# ,, 𝜓! ,--+ 2	𝐵//	𝜙# ,- 𝜓! ,,-
0

+ 𝐵%/	3𝜙# ,- 𝜓! ,,,+ 2𝜙# ,, 𝜓! ,,- 6 +	𝐵*/	𝜙# ,- 𝜓! ,-- :𝑑𝐴 
(15.g) 

𝐾+*!# = −\9𝐵**	𝜒# ,- 𝜓! ,--+ 2𝐵%*	𝜒# ,- 𝜓! ,,,+ 2𝐵//	𝜒# ,, 𝜓! ,,-+ 𝐵%/	𝜒# ,, 𝜓! ,,,
0

+ 𝐵*/	3𝜒# ,, 𝜓! ,--+ 2𝜒# ,- 𝜓! ,,-	6:𝑑𝐴 
(15.h) 

𝐾++!# =\9𝐷%%	𝜓# ,,, 𝜓! ,,,+ 𝐷**	𝜓# ,-- 𝜓! ,--+ 𝐷%*3𝜓! ,,, 𝜓# ,--+ 𝜓# ,,, 𝜓! ,-- 6
0

+ 4	𝐷//	𝜓# ,,- 𝜓! ,,-+ 2	𝐷%/3𝜓# ,,, 𝜓! ,,-+ 𝜓! ,,, 𝜓# ,,- 6
+ 2	𝐷*/3𝜓# ,-- 𝜓! ,,-+ 𝜓! ,-- 𝜓# ,,- 6:𝑑𝐴	 

(15.i) 

 
 
The proposed formulation (Eq. (14)) has a total number of (𝑁4 	+ 	𝑁5 	+ 	𝑁6)  linear equations 

containing the same number of unknown constants. The computations of all integrals in Eq.(15) and the 
solution for the unknown constants 𝐶4, 𝐶5 and 𝐶6 of Eq. (14) can be carried out using any suitable 
software such Wolfram Mathematica or Maple [34], [35]. The plate problem is completely solved as the 
unknown coefficients are obtained, then the displacements 𝑢, 𝑣, and 𝑤 are obtained in functional forms 
(Eq. (11)). Then, the secondary variables of the plate such as bending moments, membrane forces and 
stresses can be found using direct differentiation of the obtained displacements. 
 

4 NUMERICAL EXAMPLES 

The capability of the proposed formulation is verified through two numerical examples having high 
degree of anisotropy and free boundary conditions and confirmed by FEM results. The FEM analysis is 
performed using ABAQUS [36] by employing the shell element STRI3 which is on the basis of the 
classical (Kirchhoff) shell. The mesh is made extremely fine satisfying the convergence of the laminated 
anisotropic plate bending problem.  
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3.1 Materials, geometry and trial functions 

 
Consider a square laminated plate with unsymmetrical layers oriented at (45o/-75o) and the plate is 

centered at the origin (x=0, y=0) and having the dimensions of 2a × 2b and thickness t as shown in 
Figure 2. The ply elastic material properties are: 		𝐸% = 206.85	𝐺𝑃𝑎, 	𝐸* = 7.5845	𝐺𝑃𝑎, 	𝐺%* =
4.8265	𝐺𝑃𝑎, 𝜈%* = 0.3. This stacking sequence is selected to obtain a highly anisotropy wehre all 
components of the stiffness matrices [A], [B] and [D] are present. The geometrical properties of the 
laminated plate are 𝑎 = 𝑏 = 5, and 	𝑎 𝑡⁄ = 50.  The plate is subjected to a uniform lateral load and 
solved for two opposite free edges (F) and two types of boundary conditions for the other edges: once 
with simply supported (S) and once with clamped (C).  

 
Figure 2: Laminated anisotropic plate (two layers angle-ply) 
 
 
The following general polynomials satisfy the geometric boundary conditions (deflection/slope) as 

per Ritz method requirements:  

𝑢 =22𝐶&'4(𝑎* − 𝑥*)"'(𝑏* − 𝑦*)"'𝑥&𝑦'
1

&).

(

').

𝑣 =22𝐶&'5 (𝑎* − 𝑥*)"'(𝑏* − 𝑦*)"'𝑥&𝑦'
1

&).

(

').

𝑤 =22𝐶&'6(𝑎* − 𝑥*)"(𝑏* − 𝑦*)"𝑥&𝑦'
1

&).

(

').

 (16) 

where ℎ	is 0 for free edges, 1 for simply supported edges (preventing the lateral deflection) and 2 for 
clamped edges (preventing the lateral deflection and slope); and  ℎ= is 0 for free edges and 1 for simply 
supported and clamped edges (the in-plane movement is prevented). The polynomial terms are truncated 
at maximum values of n and m as required to achieve convergence, where in both example the value of 
6 is used for both n and m. The results of the numerical examples are discussed in the following section. 

 
 

3.2 Results and discussions 

The comparison of normalized deflection (𝑤/𝑡) and bending moments 𝑀�, = 𝑀,(2𝑎)* (𝑡+𝐸*)⁄  at 



 
 

the center and the middle of free edges of the plates is obtained using the proposed method and compared 
with FEM results as shown in Table 1. It is clearly shown that the proposed method predicts accurately 
the bending behavior of laminated anisotropic plate involving free edges. Also, the moment at the middle 
of the clamped edge shows good accuracy of the proposed solution. The deflection along the lines (y = 
0 and y = b) is presented graphically in Figure 3 and 4 and the normalized moment 	
𝑀�,	 along the center line (y = 0) is plotted in Figure 5, which are perfectly matching the results of the 
FEM solution. All obtained results are for the normalized load (q	 (*	@)

(

B	C%%	
= 1). 

 
Table 1: comparison of the present solution with FEM for load	"𝐪	 (𝟐	𝒂)

𝟒

𝐭	𝐃𝟏𝟏	
= 𝟏& 

  SFSF plate CFCF plate 
Point Method   𝑤/𝑡 𝑀�, 𝑤/𝑡 𝑀�, 
X =0, 
y=0 

Present  0.0224597 0.0057501 0.0058564 0.0016267 
FEM 0.0224597 0.0057787 0.00586288 0.0016420 

X =0, 
y=b 

Present  0.0258097 0.0036250 0.0063940 0.00134171 
FEM 0.025988 0.0036323 0.0064043 0.00133784 

X =a, 
y=0 

Present  -- -- -- -0.0032860 
FEM -- -- -- -0.0031259 

 
  

 
Figure 3: Deflection of SFSF plate along the free edge (y = b) and center line (y =0) 
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Figure 4: Deflection of CFCF plate along the free edge (y = b) and center line (y =0) 

 
Figure 5: Normalized moment 𝑴( 𝒙 of SFSF and CFCF plates along the center line (y =0) 

 
 
9 CONCLUSIONS 

Ritz method has been cast in a matrix form for bending behavior of a rectangular laminated 
anisotropic plate involving mixed boundary conditions. The formulation of Ritz method in a matrix form 
facilitates and automates the solution process. It also allows the accommodation of as many polynomial 
terms as required for the solution convergence and accuracy. Another important advantage of the 
proposed formulation is getting the solution in a functional form which can be easily used for further 
parametric and optimization design of laminated anisotropic plates. Two numerical examples involving 
free edges have been solved to examine the accuracy and the versatility of the proposed method. The 
comparison with FEM results confirm the capability of the automated Ritz method solution.  
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