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ABSTRACT 

Incorporating graphene derivatives (GDs), as a reinforcing filler, into cementitious composites can 

enhance their mechanical properties, durability, and conductivity. Thermally conductive cementitious 

composites can be employed in multiple applications. Accordingly, cementitious composites reinforced 

by graphene derivatives (CCRGDs) have attracted much attention due to their multifunctional 

capabilities. For these multifunctional applications, comprehending the impact of different parameters, 

such as component properties, on the thermal conductivity of CCRGDs is essential. 

This study develops a nonparametric method called neural network (NN) to investigate the thermal 

conductivity of CCRGDs. To provide the required data set for the learning process of the NN model, a 

micromechanics model is developed using the concept of the representative volume element. In fact, 

this study uses a hybrid modelling framework through synergistically coupling data-based (NN) and 

knowledge-based (micromechanics) methods to investigate the thermal conductivity of CCRGDs at an 

optimized computational cost and complexity while maintaining high accuracy. 

Finally, a sensitivity analysis is conducted using the NN model. The sensitivity analysis clarifies how 

the parameters, including the volume fraction of GDs, the aspect ratio of GDs, and the conductivity of 

the cementitious matrix to GDs ratio affect the thermal conductivity of CCRGDs.   

 

1 INTRODUCTION 

Cementitious composites play an influential role in the global construction industry, serving as the 

most extensively utilized man-made material [1]. To meet the evolving needs of modern infrastructure, 

it is essential for the construction industry to embrace more innovative and sustainable cementitious 

composites [1, 2]. Accordingly, the single function of traditional cementitious composite has not been 

able to respond to the requirements of multifunctional infrastructures [3, 4]. As a result, there is a global 

focus on developing multifunctional cementitious composites [2, 5, 6]. 

Much research has focused on the application of conductive nanomaterials to provide cementitious 

composites with multifunctional capabilities [7, 8]. Among these, graphene derivatives (GDs) have 

shown great potential to enhance the characteristics of cementitious composites from atomic to macro 

scale [9-11]. Graphene is a single layer of carbon-carbon hexagonal plane [12]. GDs are obtained by 

modifying or functionalizing graphene. Even though graphene itself possesses remarkable physical and 

functional properties, GDs have altered properties compared to pristine graphene [12]. The most 

commonly used graphene derivative in the cementitious composites industry includes graphene oxide 

(GO), graphene nanoplatelet (GNP) and reduced graphene oxide (rGO) [11, 13]. GDs exhibit unique 

mechanical properties, conductivity (both electrical and thermal), and piezo resistivity [14]. The thermal 

conductivity of GDs can reach 5000 W/mK [15, 16]. This makes them a promising option for 

manufacturing thermally conductive cementitious composites. Consequently, cementitious composites 

reinforced by graphene derivatives (CCRGDs) with enhanced thermal conductivity, mechanical 
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properties and durability can be potentially applied in the construction industry for multiple applications 

[15, 17-19], as shown in Figure 1. 

 

 

 
 

Figure 1: Applications of thermally conductive CCRGDs 

 

 

Understanding the impact of various parameters, such as the properties of the components, on the 

thermal conductivity of CCRGDs is crucial for certain applications. Even though a comprehensive 

micromechanics model can precisely investigate the conductivity of GDs-reinforced composites [20], it 

is associated with considerable computational costs and complexity [21]. Alternatively, the NN model 

can offer an efficient way to predict the thermal conductivity of CCRGDs, reducing both the 

computational cost and complexity compared to micromechanics models [22, 23]. However, NNs 

necessitate a comprehensive dataset to ensure trustworthy predictions. 

This study employs a hybrid modelling approach by coupling a micromechanics model with a NN 

model to investigate the thermal conductivity of CCRGDs as multifunctional cementitious composites. 

Accordingly, a representative volume element (RVE) is developed to predict the thermal conductivity 

of CCRGDs using finite element methods. The developed RVE is validated against experimental data 

from previously published research. Subsequently, the validated RVE is utilized to generate the 

necessary dataset for training the NN model. The NN model is then employed to conduct a sensitivity 

analysis, investigating the impact of non-dimensional parameters such as the volume fraction of GDs 

(𝑉𝑓 ), aspect ratio of GDs (
𝐷

𝑡
), and the cementitious matrix to GDs conductivity on the thermal 

conductivity of CCRGDs (
𝐾𝐺

𝐾𝐶
). Figure 2 summarizes the workflow of this study. 

 

 

 
 

Figure 2: Workflow of hybrid modelling approach to implementing the sensitivity analysis. 



 

 

 

 

2 HYBRID MODELING FRAMEWORK FEATURES 

2.1 FEATURES OF MICROMECHANICS MODEL 

A two-dimensional RVE was generated to reduce the complexity of the simulations. We used 

periodic boundary conditions and geometry periodicity in this study. Figure 3 displays the flowchart for 

the RVE creation. 

 

 

 
 

Figure 3: Flow chart of RVE generation. 

 

 

The finite element analysis was done in Abaqus software. The thermal conductivity of the RVE (k) was 

calculated using Fourier's law [24, 25], 

                                                                            k = 
𝑞𝛥𝐻

𝛥𝑇
 . (1) 

Where q represents the imposed heat flux, ΔH expresses the height of the RVE and ΔT represents the 

temperature difference of the surface where the heat flux is applied. 

Furthermore, the mesh convergence analysis and RVE size sensitivity analysis were conducted 

before validating the RVE prediction results against experimental values. Finally, the validated RVE 

was used to generate the required dataset to train the NN model. 
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2.2 Features of neural network model 

Multi-layer perceptron was employed in this study as it is one of the most widely used types of NN 

in cementitious composites property prediction [26-28] . The developed multi-layer perceptron includes 

an input layer, and three hidden layers, each containing 80 neurons and one output layer. The 

backpropagation algorithm was used for the learning process. Input layer comprised the non-

dimensional parameters, including the volume fraction of the graphene derivative, the aspect ratio of 

graphene derivatives, and the conductivity of the cementitious matrix to GDs. The thermal conductivity 

of GRCCs was the output layer.  Furthermore, in the MLP model, the activation function and solver 

selected were Rectified Linear Unit (ReLU) and LBFGS (Limited-memory Broyden-Fletcher-Goldfarb-

Shanno), respectively. The prediction performance of the MLP model was evaluated using the 

coefficient of determination (R2) and root mean square error (RMSE) as evaluation metrics for the 

prediction performance of the model, 

         𝑅2 = 1 −
∑ (𝑘𝑜− 𝑘𝑝)2𝑚

𝑗=1

∑ (𝑘𝑜− 𝑘𝑜
𝑚)2𝑚

𝑗=1

 , 
 (2) 

                                                        𝑅𝑀𝑆𝐸 = √
1

𝑚
∑ (𝑘𝑜 −  𝑘𝑝)2𝑚

𝑗=1  . 
(3) 

where m represents the number of samples, ko  indicates the experimental thermal conductivity, kp 

denotes the predicted thermal conductivity, and ko
m  is the average of the experimental thermal 

conductivity. 

 

3    SENSITIVITY ANALYSIS 

Using the NN model, a sensitivity analysis was conducted to evaluate the effect of parameters, 

including  𝑉𝑓  , 
𝐾𝐺

𝐾𝐶
 and 

𝐷

𝑡
 on the thermal conductivity of GDRCCs. One of the parameters was kept 

constant at its average value, while the other parameters were changed over a certain domain to assess 

their impact on the thermal conductivity of GDRCCs. 

 

4 RESULTS AND DISCUSSION 

4.1 Hybrid modelling framework prediction performance 

Figure 4 shows the prediction performance of the micromechanics model against experimental values 

from the literature. 

 

 

 



 

 

 
 

Figure 4: Prediction performance of the micromechanics model against the experimental value 

 

 

Figure 4 shows an acceptable agreement between the micromechanics model prediction results and 

experimental values. Thus, the developed RVE was used to create the required dataset to train the NN 

model. The dataset includes 964 data points. The dataset was divided into training and testing sets with 

a training-to-testing ratio equal to 0.2. Table 1 indicates the prediction performance of the NN model in 

the training and testing process. 

 

 

NN Model 

Train Test 

R2 RMSE R2 RMSE 

0.96 0.14 0.96 0.13 

 

Table 1: prediction performance of the NN model. 

 

 

Moreover, the prediction performance of the NN model was further evaluated using the experimental 

values from the literature, as depicted in Figure 5.  

Figure 5 demonstrates a good degree of conformity between the prediction outcomes obtained from the 

NN model and the corresponding experimental values. This finding implies that the NN model can be 

employed directly to predict and investigate the thermal conductivity of GDRCCs with comparable 

accuracy and reliability as the micromechanics approach while exhibiting reduced computational cost   

and complexity. 
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Figure 5: Prediction performance of the NN model against the experimental value. 

 

 

4.2 Sensitivity analysis 

The outcomes of the sensitivity study are summarized in the following sections: 

4.2.1 Combined effect of graphene derivatives diameter to thickness ratio (
𝑫

𝒕
) and volume 

fraction (𝑽𝒇) 

The  
𝐾𝐺

𝐾𝐶
  was kept constant on its average value to determine the combined impact of 𝑉𝑓 and (

𝐷

𝑡
)  on 

the thermal conductivity of GDRCCs, as shown in Figure 6.  

According to Figure 6, regardless of the 
𝐷

𝑡
, increasing the volume fraction leads to a rise in thermal 

conductivity. However, the rate of increase becomes more pronounced beyond a volume fraction of 3%, 

possibly due to a lack of conductive paths below this threshold. Additionally, with constant 𝑉𝑓 , 

increasing the  
𝐷

𝑡
  values result in an increase in thermal conductivity. As the volume fraction increases, 

the impact of  
𝐷

𝑡
 on the thermal conductivity of GDRCCs becomes more highlighted. 

Moreover, according to Figure 6, the impact of the 𝑉𝑓 on the thermal conductivity of GRCCs is more 

significant compared to the effect of 
𝐷

𝑡
. 
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Figure 6: Combined effect of aspect ratio and volume fraction of DGs on thermal conductivity 

 

 

4.2.2 Combined effect of graphene derivatives to cementitious matrix thermal conductivity 

ratio (
𝑲𝑮

𝑲𝑪
)  and volume fraction (𝑽𝒇) 

The  
𝐷

𝑡
  was kept constant on its average value to assess the combined effect of 𝑉𝑓 and 

𝐾𝐺

𝐾𝐶
  on the 

thermal conductivity of GDRCCs, as shown in Figure 7.  

According to Figure 7, the influence of variations in 𝑉𝑓 and  
𝐾𝐺

𝐾𝐶
  on the thermal conductivity of GDRCCs 

is negligible when 𝑉𝑓  is below 3%. This observation could be attributed to the lack of conductive 

pathways below the  𝑉𝑓 = 3% . However, beyond the 3% threshold, an increase in both the 𝑉𝑓 and  
𝐾𝐺

𝐾𝐶
  

values, increases thermal conductivity. Nevertheless, it should be noted that the effect of 𝑉𝑓 on thermal 

conductivity is more pronounced compared to that of  
𝐾𝐺

𝐾𝐶
. 

Generally, based on the observations from Figures 6 and 7, the influence of  
𝐾𝐺

𝐾𝐶
 and 

𝐷

𝑡
   on the thermal 

conductivity of GDRCCs is found to be dependent on the 𝑉𝑓. Notably, for 𝑉𝑓 values below a specific 

threshold (3%), the impact of  
𝐾𝐺

𝐾𝐶
 and 

𝐷

𝑡
 is evidently marginal. However, as the 𝑉𝑓 increases, the effects 

of  
𝐷

𝑡
  and 

𝐾𝐺

𝐾𝐶
 become more obvious. 
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Figure 7: Combined effect of  
𝐾𝐺

𝐾𝐶
 and volume fraction on thermal conductivity 

 

 

 

5 CONCLUSIONS 

This study combined a micromechanics model with a NN model to investigate the thermal 

conductivity of CCRGDs as multifunctional cementitious composites. Accordingly, a RVE was created 

using finite element methods to predict the thermal conductivity, and its prediction performance was 

confirmed using experimental data from the literature. The validated RVE was then used to generate a 

dataset for training the NN model. Finally, the NN model was employed to conduct a sensitivity analysis, 

exploring the influence of features on the thermal conductivity of CCRGDs.  

The main conclusions can be summarized as follows: 

 

I. The developed NN model (trained by the micromechanics model) could reliably predict the 

thermal conductivity of CCRGDs with lower computational costs compared to micromechanics 

model. 

II. Increase in 𝑉𝑓 and  
𝐷

𝑡
  leading to an increase in the thermal conductivity of GRCCs. However, 

the magnitude of this effect is mainly dependent on the 𝑉𝑓. 

III. Increase in 𝑉𝑓 and  
𝐾𝐺

𝐾𝐶
  leading to an increase in the thermal conductivity of GRCCs. However, 

the magnitude of this effect is mainly dependent on the 𝑉𝑓. 
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