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ABSTRACT  

This study proposes a new method for optimizing steering layup path of a stiffened CFRP panel. 

Bezier curve was applied to determine the steering orientation of a skin panel. The objective functions 

were set to maximize the first buckling load and ultimate failure load (collapse load or initial fiber failure 

load) under compressive loading. The variables for the optimization were control points of Bezier curve. 

Artificial Neural Network (ANN) and Genetic Algorithm (NSGA-Ⅱ) were applied to the optimization 

procedure. The results demonstrated that the stiffened panels optimized using Bezier steering layup path 

and proposed optimization procedure have superior structural performance compared to the initially 

designed panel. 

 

1 INTRODUCTION 

Carbon fiber reinforced plastic (CFRP) composites are widely applied to primary aircraft 

structures. Composite stiffened panels are applied to aircraft wings and fuselages because they can 

transfer loads much more efficiently than unstiffened panels. To achieve the required buckling load 

while reducing structural weight, geometrical dimensions and stacking sequence were optimized [1, 

2]. In aircraft design, fuselage section is designed to work in the post-buckling regime. Panels can 

transfer load up to collapse load after buckling. Since the post-buckling analysis is computationally 

expensive, Irisarri et al. performed stacking sequence optimization using a combination of an 

approximation of the objective function by Radial Basis Functions and optimization algorithm [3]. 

Recent advancements of manufacturing techniques represented by the Automated fiber placement 

(AFP) has led to the possibility of having steering layup laminates where the fiber orientation can 

change over the plane of a ply. Further structural weight reduction may be achieved by applying the 

fiber orientation of optimal curved path for the geometry and load conditions.  

A concept called variable stiffness panel (VSP), which determines the layup path with two angular 

variables, improves mechanical properties because the stiffness such as Young’s modulus and shear 

modulus are optimally displaced locally within each layer [4]. Although there are many previous 

studies on the application of VSP to plates, few studies have applied it to stiffened panels. Coburn et 

al. applied VSP to stiffened panel and reported improved buckling load [5]. Furthermore, two previous 

studies optimized the layup path to maximize the buckling load [6, 7]. However, the compatibility of 

improved buckling load and failure load after buckling has not been examined.  

In this study, steering layup was applied to stiffened panels, and optimization of the layup path 

was performed focusing on initial buckling and post-buckling behavior under compressive loading. 

Steering layup using Bezier curves as an indicator was introduced in the 0° layer of the skin plate for 

stiffened panel. Subsequently, analytical optimization was performed focusing on the initial buckling 

load and failure load after buckling. It was performed by a combination of the approximation of the 
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objective function by Artificial Neural Network (ANN) and a multi-objective optimization algorithm, 

NSGA-Ⅱ.  

2 STIFFENED PANEL NOMINAL DESIGN AND FINIT ELEMENT MODELING 

Specimen geometry (Fig. 1), which was tested under compressive load in a previous study [8], was 

taken here as the initial design for the optimization. First, the FEM analysis results of initial design were 

compared with the experimental results. The specimen consists of a 538 × 728 mm skin plate and four 

blade stiffeners. The material was carbon/epoxy T800/924C [8] and the stacking sequence were 

[90/02/90/±45/0/90/±45/0]s for the skin plate and [90/0/90/0/±45/90/02/90/±45/±45/90]s for the web of 

the stiffener. A FE model of the panel was performed using a commercial FEM software ABAQUS 

Standard 2017. The panel was meshed with shell element S4R (56,784 elements).  

The buckling load was estimated by buckling eigenvalue analysis with a reference load of 1 N . 

Pcr = P0 + λiP. (1) 

Where Pcr is buckling load, P0 is initial load, P is reference load, and  λi is eigenvalue, respectively. The 

initial buckling load was calculated to be 117.6 kN (experiment+6.9%). It is accurately estimated and 

predicted buckling mode is good agreement with the previous research [8]. After that,  post-buckling 

analysis was performed with initial geometrical imperfection based on the results of the eigenvalue 

analysis. The first buckling mode was used to impose the out-of-plane geometric imperfections in the 

panel model with maximum amplitude of 5.0 % of the skin thickness. This imperfection was determined 

by sensitivity study of several mode combinations and magnitudes.  In post-buckling analysis, if stiffness 

is lost due to snap-through buckling, analysis may not be able to continue using Newton-Raphson 

techniques. Several methods have been proposed to stabilize the analysis.  In this study, we used pseudo-

damping [9], which is highly robust for optimization. Global equilibrium equations applying pseudo-

damping given by [10],  

Fext - Fint - cM 
Δu

Δt
 = 0. (2) 

Where Fext is external force vector,  Fint is internal force vector, c is damping factor, M is an artificial 

mass matrix calculated with unit density, and Δu is the displacement increment vector. The damping 

factor c was determined by sensitivity analysis focusing on convergence and dissipated energy. We 

confirmed that collapse load was same with the analysis using the Riks method. As a result, Fig.2 shows 

the load-displacement curve and comparison of out-of-plane displacement with experiment at mode 

switch point and after collapse. The deformation behavior of the experiment could be represented in this 

analysis. Collapse load was 699.6 kN (experiment +16%). Simulating material failure and delamination 

between the skin and stiffeners increased the accuracy, but these were not considered in this study to 

reduce computation time for optimization. 

 

 
 

 

Figure 1: Model of blade-stiffened panel [8] and boundary condition. 
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Figure 2: Results of a post-buckling analysis. Experimental results are cited from Ref. [8] (Panel2). 

 

3 LAYUP PATH CONFIGURATION 

In this paper，Bezier curve was used to represent the fiber paths. It is N-1 order functions defined 

by N control points. This curve is easy to handle as a path indicator because it is encapsulated in control 

points. Assuming that the control points are B0, B1,...BN-1, a Bezier curve is expressed as Equation (3). 

where t varies from 0 to 1. Jn,i(t) is the Bernstein basis polynomials.  

P(t) = ∑  Bi JN- ,i(t). 

N- 

i=0

 (3) 

Five control points are used in Fig. 3. Point B1 moves on y = hskin /2, and point B2 can move freely in 

the first quadrant. Point B3 is fixed at the origin. Points B4, B5 are arranged symmetrically with B2，B1 

respect to the origin. Then, the variables are the x-coordinate B1(x), B2(x) and the y-coordinates B2(y). 

Furthermore, by normalizing as follows, the layup path is determined by the three variables α, β, and γ. 

α = B1 (x) /(wskin / 2)，β = B2 (x) /( wskin / 2)， 

γ = B2 (y) /(hskin / 2)     (0  ≤  α, β , γ  ≤  ) 

        In the FEM analysis, steering layup was introduced by rotating the material coordinate system of 

each element using user subroutine ORIENT. 

 
Figure 3: Definition of steering layup path using Bezier curve. 
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4  OPTIMIZATION METHODOLOGY 

Genetic Algorithm (GA) was used for optimization of layup paths. GA is a metaheuristic approach 

inspired by the process of natural selection. GA performs optimization using variables as chromosome 

and updating generations while applying Genetic operation (Selection, Crossover and Mutation). FEM 

analyses were used for evaluation during optimization. In this study, these are replaced by interpolating 

surrogate model, which approximate the objective functions, in order to reduce the calculation costs 

during the optimization process. We introduced Artificial Neural Network (ANN) as a surrogate model. 

Fig.4 shows the flowchart of optimization process. 

First, a combination of design variables was determined by the Latin Hypercube sampling (LHS) 

[11] and FEM analyses were performed with each selected design variables. Bezier curve variables were 

α, β and γ which determine the layup path. LHS is a statistical method for generating a near random 

sample of parameter values from a multidimensional distribution. We created 950 combinations of 3 

variables using LHS. The geometry of the skin and stringers was the same as the initial panel, and the 

analyses were performed for 950 times by changing the layup path. These analyses were performed 

automatically be making a python program. At first, linear eigenvalue analysis was performed. Then, 

python program rewrites the part of the input-file related to the initial imperfection to introduce initial 

imperfection for post-buckling analysis. After that, nonlinear post-buckling analysis was performed. If 

the reaction force was less than the specified value after the collapse load, each analysis was terminated 

by user subroutine URDFIL. 

Second, we performed supervised learning with ANN using FEA results as training data. ANN 

consists of input layer, hidden layer (6 layers), and output layer. When variables (α, β, and γ) are entered 

in the input-layer, the buckling load Ncr, and failure load Nfailure are output. Stochastic Gradient Descent 

(SGD) was used as the learning algorithm. To reduce learning time, Back-propagation was used. 

Learning accuracy was verified by separating teacher data and test data.  

Finally, optimization was performed using Non-dominated Sorting Genetic Algorithm (NSGA-II) 

[12].  NSGA-Ⅱ is a method that extends GA to multi-objective optimization. Forecasting model learned 

by ANN was used for evaluation doing optimization.  We introduced the minimum radius of curvature 

rmin that can be produced by AFP as a constraint for optimization.  

 

 
 

Figure 4: Flowchart of optimization. 
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5   OPTIMIZATION PROBLEM 

The skin and stringer dimensions were fixed at the same values as the initial panel. Steering layup 

was introduced in the 0° layer of the skin. So that the layers were symmetrically stacking, we alternated 

stacking layer of steering paths with Bezier curves and its inverted layer. There were two objective 

functions. The first objective function (f1) was to maximize the buckling load Ncr under compression 

load. The second objective function (f2) was to maximize the failure load Nfailure . Failure load Nfailure was 

defined as two patterns. The Pattern A was the collapse load Ncollapse of the load-displacement curve. The 

Pattern B was the smaller value of the collapse load Ncollapse and the initial fiber failure load Ninitial. Initial 

fiber failure load was determined by the 2D Hashin criterion [13]. We introduced the minimum radius 

of curvature rmin = 635 [mm] [14] as a constraint for optimization. 

・Tensile failure (σ11>0)     FFt = √(
𝜎11

𝑋𝑡
)

2
+ (

𝜏12

𝑆12
)

2
  ≥ 1, 

(4) 

・Compression failure (σ11<0)     FFc = √(
𝜎11

𝑋𝑐
)

2
  ≥ 1. 

(5) 

Where FFt and FFc respectively stand for the evaluation values of the initiation of fiber failure under 

tensile and compressive loading, Xt and Xc respectively represent the tensile and compressive strength in 

the longitudinal direction and S12  denote the shear strength.  

The optimization problem is as follows. 

Variables:      α, β, γ (Steering layup path)， 

(6)                      Objective function:          maximize   Ncr,  

                                                          maximize   Pattern A: Ncollapse ,    

Pattern  B: min (Ncollapse, Ninitial), 

                                  Constraint:      radius of curvature r > rmin. 

 

6   RESULTS 

6.1  FEM ANALYSIS  (DATA SAMPLING) 

We performed buckling eigenvalue analysis and post-buckling analysis of 950 patterns as training 

data. Checking the load-displacement curve, the nonlinear behavior and collapse load Ncollapse 

significantly depend on the steering layup path. After that,  the initial fiber failure loads were calculated 

by Hashin criterion. Note that the increment size during the FEA was set sufficiently small. 

   Fig.5 shows a correlation diagram for each pair of variables and analysis results. For initial fiber 

failure load Ninitial, the value=0 is indicated this model did not occur fiber failure up to the collapse load. 

By using LHS, each set of variables can be created without bias. There is not obvious correlation 

between buckling load Ncr and failure load Nfailure (Ncollapse or Ninitial).  Objective function varies depending 

on the steering layup path, so there is a need to optimize variables. 

 

6.2  SUPERVISED LEARNING  

      We performed supervised learning with ANN using analysis results. All data were divided 8:2 into 

teacher and test data for error evaluation. Coefficient of Determination (R2) and Root Mean Square Error 

(RMSE) were used as error indicators. In Pattern A, R2 are (Ncr, Nfailure) = (0.97, 0.96), RMSE are (Ncr, 

Nfailure) = (1.85, 9.52). In Pattern B, R2 are (Ncr, Nfailure) = (0.97, 0.9), RMSE are (Ncr, Nfailure) = (1.86, 

11.6). These values indicate that ANN model learned well.   

Fig.6 shows the comparison of predicted values with FEM results using all data as training data. A 

relatively good agreement is shown, but some difference is seen in failure load of pattern B. This is 

because the setting of objective function was complex. However, since the predicted values are not 

dispersed and only low absolute values are predicted, this ANN model can be used for optimization. 
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Figure 5: Correlation diagram for each pair of variables and objective functions 

                  (Ninitial = 0 indicate that fiber damage did not occur by Ncollapse) 

 

 
Figure 6: Comparison of predicted values with FEA results 

                 (Overline indicate predicted value) 
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6.3  LAYUP PATH OPTIMIZATION 

For optimization, the python library DEAP [15] was used as a frame work. Fig.7(a)(b) shows the 

multi-optimization results. In Pattern A, failure load is equal to the collapse load. In Pattern B, failure 

load is the smaller value of the collapse load and the initial fiber failure load. Blue crosses indicate initial 

solution groups and red triangles indicate final solution groups. Both patterns (A, B) could be optimized 

by NSGA-Ⅱ. Panels with maximum buckling load, which is common objective function to both patterns, 

are very similar. In Pattern B, panel with maximum failure load has lower maximum value than Pattern 

A, which accounts for initial fiber failure. Four panels (M-1, M-2, M-3 and M-4) are extracted from the 

optimization results and steering layup paths are shown in Fig.7(c). Red and blue line shows the 

reference paths assuming 32 rows of prepreg tape with a tape width of 3.175mm stacked. There is a 

tendency for the steering layup path to sleep from high collapse load (M-1) to high buckling load (M-

3). Comparing M-1 and M-4, M-4 was slightly closer to unidirectional stacking for 0 degree.  

Since optimization was performed using surrogate model with ANN, extracted models (M-1, M-2, 

M-3 and M-4) were again analyzed by FEA to obtain accurate values.  The analysis results are shown 

in Table1. The error between the predicted values of ANN and the FEA results is up to 1.3 %, which is 

sufficient for optimization. These models show a trade-off relationship between objective functions in 

re-analysis results, too.  In particular, M-4 model has good performance than the initial panel for all 

valuated values. By applying the optimization method proposed in this research, it is possible to optimize 

the steering layup path considering post-buckling regime. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Results of multi-objective optimization. 
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Table 1: Re-analysis results of optimized panels. 

(M-2 model did not occur fiber damage by Ncollapse.   

For the M-4 model, predicted value Nfailure are listed in the initial fiber failure.) 

 

7  CONCLUSIONS 

Steering layup defined by Bezier curves were applied to skin of stiffened composite panel.  Bezier 

curves were defined in three variables for simplicity. In this study, these three variables were optimized. 

The proposed method, which use a combination of Artificial Neural Network (ANN) and Genetic 

Algorithms, improves mechanical properties such as buckling load and failure load. Designer can select 

a panel that satisfies the design requirements from the obtained set of solutions. Some of the solutions 

have superior buckling load and failure load than the initial panel. It was shown that both high buckling 

load and failure load at post-buckling regime can be achieved by optimizing steering layup path. In the 

future, we will incorporate fracture modes that have not been considered in this study (delamination, 

progressive damage). 
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