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ABSTRACT 

A progressive pseudograin damage accumulation (PPDA) model for predicting the fatigue life of 

short fiber-reinforced plastics (SFRPs) is proposed. The model combines viscoelastic-viscoplastic 

(VEVP) two-step homogenization theory with the Chaboche fatigue damage model. The SFRP's 

representative volume element (RVE) is decomposed into pseudograins using a machine learning-

assited two-step homogenization framework. Then, the fatigue life of each pseudograin is predicted 

using a master S-N curve prepared based on so called “normalized fatigue factor” that considers stress 

ratio and multi-axial stress state. Thereafter, the overall failure of RVE is predicted by PPDA model. 

Each pseudograin fails progressively, resulting in non-linear fatigue damage evolution and stress 

concentration of the other living pseudograins. The model is implemented in ABAQUS user material 

subroutine (UMAT) and fatigue lifetime predicted by UMAT was in a good agreement with 

experimental data. 

 

1 INTRODUCTION 

Short fiber-reinforced plastics (SFRPs) have been widely used in automotive, aerospace and 

construction field due to their low density and high strength [1]. Injection-molded short fiber-reinforced 

plastics (SFRPs) offer benefits in terms of molding flexibility, cycle time, and formability. However, 

when used in structural parts, SFRPs are often subjected to multiaxial fatigue loading under dynamic 

environmental conditions. To effectively design SFRP parts and minimize the costs associated with 

time-consuming fatigue experiments, an efficient numerical modeling method is needed. 

Various fatigue failure models of SFRPs have been reported. Phenomenological models describe the 

fatigue behavior of SFRPs at a macroscopic level [2, 3]. these models require extensive experimental 

characterization of fatigue properties, particularly when the properties of constituent materials, such as 

fiber volume fraction, aspect ratio or orientation tensor, vary significantly [4, 5]. This makes it difficult 

to apply phenomenological models to predict the fatigue behavior of SFRP parts with complex local 

fiber orientations and significant differences in mechanical properties. Micromechanical models 

described the fatigue failure of SFRPs taking account for individual constituents. Researchers described 

micromechanical models considering matrix damage [6] and delamination [7]. However, 

micromechanical models are computationally expensive. 

Pierard et al. [8] proposed a two-step homogenization framework that allows for the consideration 

of constituent material properties at an affordable computational cost. To describe non-linear behavior 

of SFRPs, viscoelastic-viscoplastic (VEVP) matrix and elastic fiber was also proposed [9] and 

developed [10]. Kammoun et al. [11] extended this framework with a pseudograin damage accumulation 

model. Rather than defining the overall failure of whole composites, a progressive failure is modeled as 

successive failures of pseudograins, employing continuum damage mechanics to calculate the damage 

accumulation of each pseudograin. The “first pseudograin damage (FPGD)” model by analogy with 

first-ply-failure concept for laminates was used to predict static failure of SFRPs under tensile loading 

considering multiaxial loading with various fiber orientations. However, it only predicts the static failure 

of SFRPs, not fatigue failure. Krairi et al. [12] proposed a fatigue failure prediction model of SFRPs 
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using mean-field homogenization method. This model assigned a continuum damage evolution law to 

weak spots in the SFRPs and calculated the damage evolution using the matrix strain. However, the 

volume fraction and damage parameters of the weak spot are assumed to be the value estimated through 

reverse engineering of the S-N curve. 

In this study, we propose a new model called ‘the progressive pseudograin damage accumulation 

(PPDA)’ model which is capable of predicting the fatigue life of short fiber-reinforced plastics. In our 

proposed model, multiaxiality and stress ratio effect of pseudograin is considered using a so called 

“normalized fatigue factor”. The overall failure of SFRPs is predicted by PPDA model considering the 

stress concentration and fatigue damage of pseudograins. Finally, PPDA model is implemented into 

ABAQUS user material subroutine (UMAT) and validated with experimental results. 

 

 

2 THEORY 

2.1 Viscoelastic-viscoplastic model for matrix 

2.1.1   Linear viscoelastic model 

The increment in overall strain can be decomposed into two components: a viscoelastic strain 

increment ε
ved  and a viscoplastic strain increment ε

vpd . 

 = +ε ε ε
ve vpd d d  (1) 

To calculate the linear viscoelastic stress, the Boltzmann superposition principle is utilized in integral 

form [13].  

 ( ) ( ) : 
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where ( )C
ve t  and C

ve  are relaxation tensor and long-term relaxation tensor written as: 
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where I
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G  and K  represent the long-term relaxation moduli. N is the number of Maxwell elements. jG  and 

jK  are the relaxation weights, and jg  and jk  are the relaxation times. 

 

2.1.2   Viscoplastic model 

The Perzyna viscoplastic flow rule is used for viscoplastic behavior. 
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where 


σ

f
 indicates the direction of viscoplastic strain vector perpendicular to the yield surface in the 

flow rule.   is the viscoplastic multiplier indicating the magnitude of the viscoplastic strain vector.   

and m are viscosity coefficient and exponent, respectively. In the above equation, “ • ” are MacCauley 



23rd International Conference on Composite Materials 

Belfast, 30th July - 4th August 2023 

brackets used to describe 0• =  when 0•  , and • = •  when 0•  . Isotropic hardening stress 

function with power law is used for yield function as follows: 

 0 ( )   = − − vp

yf  (7) 

 ( ) ( )  =vp vp BA  (8) 

where 0 y  is initial yield strength and ( )  vp  is isotropic hardening stress function. In this model, 

equivalent stress   is calculated using classical J2 theory (von Mises stress). A and B are hardening 

coefficient and exponent, respectively. 

 

 

2.2   Pseudograin stress 

In order to calculate the stress tensor of every pseudograin, the homogenization of elastic fiber and 

VEVP matrix is required. Mean-field homogenization method based on the Mori-Tanaka model is used 

[8]. Herein, we briefly introduce mean-field homogenization between elastic fiber and VEVP matrix. 

The macro-strain field is expressed as 


ε , where 


•  designates volume averaging operator quantity. 

The average micro-strain field in each phase can be correlated using the strain concentration tensor 

(between matrix and fiber) 
A  as follows. 

 :

 
=ε A ε

f m

 (9) 

Mori-Tanaka model assumes that all fibers in composites are aligned and identical. The strain 

concentration tensor 
A  provided by the Mori–Tanaka model is as follows: 

 
1

1: ( : )
−

− = + − A I S C C Im f
 (10) 

where  is Eshelby’s tensor of ellipsoidal inclusion. The details of the Eshelby’s tensor component are 

given in Mura's study [14]. Average macro-strain field can be correlated using the strain concentration 

tensor (between phase and macro-strain) 
B  are as follows: 
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where mv  and fv  are the volume fraction of matrix phase and fiber phase, respectively. Strain increment 

field of macroscopic composites, fiber and matrix phases are proposed by Doghri et al. [15] as follows: 
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where τ  is the increment of inelastic term. The increment of inelastic term is calculated by 

incrementally affine linearization method developed by Miled et al. [9]. The VEVP stress increment of 

the matrix can be linearized with tangent stiffness Cm  and inelastic term τ  as follows: 

 : =  +σ C ε τm  (15) 

Substituting Equation (13) and (14) into Equation (12) with respect to the stress increment field, we 

obtain, 

 
1: ( ) : ( ) : ( ) :−

   
 =  + − − − σ C ε C C I B C C τ

m
f f m f m fv  (16) 


C  is the effective stiffness tensor of macroscopic composites is derived as follows: 

 : : 


 = + C C C A Bm m f f mv v  (17) 
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2.3 Fatigue lifetime for each pseudograin 

2.3.1   Normalized fatigue factor 

Kawai et al. [16] proposed “modified fatigue stress ratio” using Tsai-Hill effective stress ( ) and 

stress ratio ( R ) for unidirectional continuous fiber-reinforced plastics. 

 
1/ 2(1 )

1 1/ 2(1 )





−
 =

− +

R

R
 (18) 

In our study, Tsai-Wu effective stress   is used instead of   in Equation (18). In addition, Equation 

(18) is modified to apply to SFRPs. Jang et al [17] modified Equation (18) for SFRPs by introducing the 

additional term. Using fitting parameter 
1 , a new equation for master S-N curve was suggested in terms 

of ‘normalized fatigue factor (NFF)’ and validated by demonstrating that S-N curves of various FRPs 

can be collapsed into a single master S-N curve using NFF in the followings. 

 1
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Tsai-Wu failure criteria [18] was used for the effective stress  . Assuming that pseudograin is 

transversely isotropic and that 23  is negligible, Tsai-Wu failure criteria can be expressed as follows: 
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In this study, non-dimensional Tsai-Wu effective stress is defined as the distance from origin to the 

failure envelope, representing the ratio of the magnitude of the current stress state to the static failure of 

the composites as shown in Figure 1. 

 

 
Figure 1. Schematic illustration of non-dimensional Tsai-Wu effective stress. 

 

2.3.2   Chaboche fatigue damage model 

After multiaxial stress state of pseudograin is converted to universal scalar quantity (NFF), fatigue 

damage model is required to predict the lifetime of pseudograins. Chaboche et al. suggested a non-linear 

continuous fatigue damage model for stress-controlled condition [19]. This model describes the 

progressive degradation of material for the crack initiation process. 

 1 max[1 (1 ) ]
(1 )



 +  −
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where D  is the fatigue damage variable, maxS  is the maximum stress, and mS  is the mean stress,   is 

constant.   and M are stress dependent functions and are expressed by, 
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where 0lS  is the fatigue limit, uS  is the ultimate tensile strength, a  is non-linearity parameter, b  is 

mean stress effect parameter, and 0M  is a constant. This fatigue damage law was used to predict fatigue 

life of SFRPs by incorporating NFF into Equation (19) as follows. 

 1 max
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[1 (1 ) ]
(1 )


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= − −  
− 

dD
D

dN M D
 

  

(24) 

Integrating damage from 0 to 1 in Equation (24), fatigue lifetime ( fN ) can be expressed as: 

 max

0
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( 1)(1 )
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2.4 Fatigue lifetime for RVE 

In this section, the method to predict the overall failure of RVE is introduced. PPDA model is inspired 

by the progressive-ply-failure concept of laminate composites [20]. Once a pseudograin fails, the stress 

of the other pseudograins is concentrated. 

We assume that the RVE in the fatigue loading is composed of k pseudograins: iPG  (i=1, 2, …, k). 

The NNF of pseudograins is calculated to  i  (i=1, 2, …, k) by Equation (13). The fatigue life of 

pseudograins is expressed by .f iN  (i=1, 2, …, k) using Equation 20. Here, assume that 1PG  is a 

pseudograin with the shortest lifetime and kPG  is the pseudograin with the longest lifetime. Once 1PG  

has failed first, all pseudgrains are cycled through .1fN  cycles. At this cycle ( .1fN ), the stress of the 

other pseudograins ( iPG ) is concentrated by accumulated damage of the other pseudograins. This 

damage is expressed as follows: 
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where .1iD  is accumulated damage in iPG  at .1fN  cycles. Using Equation (26), stress concentration due 

to the failure of 1PG . is determined. The scheme of PPAD model is provided in Figure 2. 

 

 
Figure 2. The scheme of progressive damage accumulation method. 

 

 

3 EXPERIMENTAL 

3.1 Materials 

SFRP specimens were made of short glass fiber-reinforced polypropylene. The glass fibers with 30% 

weight fraction was embedded in polypropylene (or 13.09% volume fraction). The injection-molded 

sheets with a thickness of 2.7 mm were prepared and hereafter denoted by PP-GF30. The fiber 

orientation tensor ija  used in this study is as follows: 
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0.741 0.000 0.000

0.000 0.242 0.000

0.000 0.000 0.017

 
 =
 
 

ija  (27) 

3.2 Mechanical testing of PP 

The VEVP properties of the polypropylene matrix were characterized. The viscoelastic parameters 

were identified by dynamic mechanical analysis (DMA) test. DMA test machine (Q800, TA instrument, 

USA) was used. The length and width of specimen were 60 and 10 mm, respectively. Testing 

temperature were ranged from −50 to 140°C with 10°C increments. The frequency was ranged from 

0.01 to 10 Hz. The viscoplastic parameters were obtained by tensile tests. Tensile tests were conducted 

at room temperature (25°C) using a tensile testing machine (Instron 8801; Instron, Norwood, MA, USA) 

according to the ISO 527-2 standard [40]. Two test speeds (1.15 and 5 mm/min) were used. A digital 

image correlation (DIC) system (Vic-3D v7; Correlated Solutions, Inc., Irmo, SC, USA) was used to 

measure the tensile strain of the specimens. The dog bone-shaped specimens were used. The total length 

and gauge width of each specimen were 180 and 10 mm, respectively. 

3.3 Fatigue testing of SFRP 

Load-controlled fatigue tests were conducted using an Instron 8801 (Instron 8801; Instron, Norwood, 

MA, USA). The frequency was set to 5 Hz. The fatigue test was conducted with a stress ratio of 0.1 and 

-1 at room temperature (25°C). Specimens were obtained from the injection molded plate. The 

specimens were then machined at different orientation angles by milling. Specimens with three fiber 

orientation were used and named as PP-GF30-0D, 20D and 90D, respectively. 

 

4 RESULTS AND DISCUSSION 

4.1 VEVP behavior of PP 

The VEVP properties of PP matrix obtained from the DMA test and tensile tests are shown in Section 

4.1.  Figure 3 shows the DMA test and tensile test results of polypropylene. The storage modulus - 

reduced time curve is shown in Figure 3(a). Fitting the storage modulus - reduced time curve, the 

viscoelastic parameters were obtained. Viscoplastic parameters were obtained by curve fitting of tensile 

test results as shown in Figure 3(b). The obtained viscoelastic and viscoplastic parameters of the 

polypropylene were presented in Table 1. 

 

Figure 3. Mechanical tests result of PP: (a) DMA test results and (b) tensile test results. 

 

Viscoelastic parameter 

Instantaneous modulus ( 0E ) 4201 MPa 

j  Relaxation time ( j ) Maxwell component moduli ratio ( 0/jE E ) 

1 106 0.0436 

2 105 0.0475 

3 104 0.0459 
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4 103 0.0268 

5 102 0.0398 

6 101 0.0525 

7 100 0.0361 

8 10-1 0.0898 

9 10-2 0.0565 

10 10-3 0.0511 

11 10-4 0.0480 

12 10-5 0.0579 

13 10-6 0.0455 

14 10-7 0.0385 

15 10-8 0.0407 

Viscoplastic parameter 

Initial yield strength ( 0 y ) 10 MPa 

Viscoplasctic coefficient (  ) 5489 MPa·s 

Viscoplasctic exponent ( m ) 1.2 

Hardening coefficient ( A ) 88.79 MPa 

Hardening exponent ( B ) 0.4792 

Table 1. VEVP parameters of PP. 

4.2 Experimental validation of VEVP homogenization model 

shows the re-simulation result for validation of tensile test of PP-GF30. Elastic modulus of 72.40 

GPa, Poisson’s ratio of 0.22 and fiber aspect ratio of 25 were used for glass fiber in simulation. Poisson’s 

ratio of 0.43 was used for the PP matrix in simulation. A cubic geometry of size 6×6×6 mm was created 

and meshed with a C3D8 element of size 1×1×1 mm as shown in Figure 4(a). The U1=0, U2=0, and 

U3=0 boundary conditions were applied to the plane perpendicular to the x-, y-, and z-axis in the 

negative direction, respectively. A displacement boundary condition of 0.06 mm was applied to the 

plane perpendicular to the x-axis in the positive direction so that the applied tensile strain was 1%. 

The re-simulation result was compared with tensile tests of PP-GF30-0D as shown in Figure 4(b). 

The simulation result was in good agreement with the experimental stress-strain curve of PP-GF30-0D. 

It was confirm that the developed UMAT properly described VEVP behavior of SFRPs. 

 

Figure 4. (a) Boundary condition of simulation and (b) experimental and UMAT re-simulation 

stress–strain curves of PP-GF30-0D 

4.3 Experimental validation of PPDA model 

The reconstruction of orientation distribution function (ODF) and pseudograin decomposition 

procedure for 12 pseudograins using machine learning-assisted method were implemented in UMAT. 

Then, the VEVP model and mean-field homogenization method described in the previous sections were 

implemented. A cubic geometry of size 6×6×6 mm was created and meshed with a C3D8 element of 

size 1×1×1 mm. The U1=0, U2=0, and U3=0 boundary conditions were applied to the plane 

perpendicular to the x-, y-, and z-axis in the negative direction, respectively. A load in a sine wave with 
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5 Hz frequency was applied to the plane perpendicular to the x-axis in the positive direction. Varying 

maximum load of sine wave and stress ratio, the fatigue tests of three different specimens (PP-GF30-

0D, 20D, 90D) were simulated. Simulation conditions are detailed in Table 2. 

 

Stress ratio 

( R ) 
Specimen 

Applied maximum stress 

(MPa) 

Applied maximum load 

(N) 

-1 PP-GF30-0D 20, 30, 40, 50, 60 720, 1080, 1440, 1800, 2160 

-1 PP-GF30-20D 20, 30, 40, 50 720, 1080, 1440, 1800 

-1 PP-GF30-90D 15, 20, 30, 40 540, 720, 1080, 1440 

0.1 PP-GF30-0D 40, 50, 60, 70, 80 1440, 1800, 2160, 2520, 2880 

0.1 PP-GF30-20D 40, 50, 60, 70 1440, 1800, 2160, 2520 

0.1 PP-GF30-90D 40, 50, 60 1440, 1800, 2160 

Table 2. (a) Boundary condition of simulation and (b) experimental and UMAT re-simulation 

stress–strain curves of PP-GF30-0D 

 

The simulation results are presented in Figure 5, where Figure 5(a) and Figure 5(b) show the result 

of tension-compression ( 1= −R ) and tension-tension ( 0.1=R ) conditions, respectively. Both S-N 

curves show a good agreement with experimental results, confirming that NFF reflects the mean stress 

effect of pseudograins inside SFRPs. The black, red, and green solid lines in Figure 5 represent 

simulation results of specimens with different fiber orientation tensor (0D, 20D, 90D), showing a good 

agreement with the experimental results. Therefore, it can be claimed that Tsai-Wu effective stress 

concept and pseudograin decomposition method can properly capture the effect of fiber orientation. 

However, there is a slight difference between the simulation results of PP-GF30-0D and PP-GF30-20D 

in law fatigue cycle (~103) shown in Figure 5(a) and the experimental results. This is thought to be due 

to a master S-N curve fitting problem.  

 
Figure 5. Comparison between numerical and experimental S-N curves of PP-GF30 with different 

fiber orientations (0D, 20D, 90D) for stress ratio (a) -1 and (b) 0.1. 

 

5 CONCLUSIONS 

In this study, we proposed a novel PPDA model to predict fatigue lifetime in SFRPs. Chaboche 

fatigue damage model was used for the non-linear damage calculation of pseudograins and normalized 

fatigue factor was used to consider their anisotropic fatigue characteristics. Furthermore, we considered 

stress concentration and accumulation of fatigue damages. Finally, we determined a reasonable RVE 

fatigue failure. We implemented PPDA model into UMAT and compared the predicted S-N curves with 

experimental data. Overall, the proposed model is a promising approach for predicting the fatigue 

behavior of SFRPs and can potentially be extended to other composite materials. 
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