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ABSTRACT 

 

The present work aimed to evaluate the use of neural networks for the failure prediction of fibre-

reinforced polymer composite materials. The model was developed on the experimental data from the 

first World-Wide Failure Exercise (WWFE-I). A neural network with 13 inputs that describe the lamina 

properties, layup sequence, and the loading conditions trained to predict the length of the failure vector 

(L=(σx
2+σy

2+τxy
2)0.5). A hyperparameter grid search using k-fold cross-validation was used to determine 

the ideal combination of the learning rate (α), weight decay (λ), and network architecture. The mean 

squared error was used to assess the neural network’s performance on some experimental data not seen 

during training. The neural network with two hidden layers and 20 units per hidden layer achieved the 

lowest validation error. The Tsai-Wu, Cuntze, and Puck theory predictions were compared with the 

failure envelopes produced by the neural network. The data-driven model outperformed the 

conventional theories on the experimental data. The failure strength of composite laminates may be 

effectively predicted from experimental data using neural networks. The lack of experimental data for a 

given laminate is a crucial concern and, ultimately, is the limiting factor of predictive performance. 

 

1 INTRODUCTION 

Fibre-reinforced polymer (FRP) composites are widely used in advanced applications due to their 

superior properties and lightweight characteristics. Several analytical theories have been developed to 

predict their failure; however, there remains a lack of confidence in their precision. In addition, complex 

failure modes and the effect of manufacturing processes have made it challenging to predict laminate 

failure under multiaxial stress conditions. Recently, data-driven techniques have been gaining popularity 

within engineering applications. For example, within the field of composites, neural networks have been 

used to simulate and optimise cure cycles [1], [2], detect defects within laminates [3], [4], and fatigue 

life prediction [5], to name a few. 

 

Moreover, neural networks have been leveraged for predicting the failure strength of FRP 

composites. Studies have investigated using neural networks for predicting biaxial tube failure [6], 

compressive strength [7], and bearing strength of bolted connections [8]. Fontes and Shadmehri [9] 

previously proposed a framework for predicting the failure strength of various laminates and material 

systems subjected to 2D and 3D stress states. The present study proposes a simplified framework that 

predicts failure for laminates subjected to 2D stresses. This framework utilises fewer inputs and a smaller 

data set to evaluate if an improvement in predictions can be achieved by training a smaller model. The 

methodology used to prepare the data and train the model is described. Moreover, the network’s 

predictions are analysed and compared to predictions made by conventional failure criteria. 
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2 METHODOLOGY 

The procedure used to create the data-driven model is described in this section. In addition, the 

experimental data chosen for the model, the process followed to prepare the data, and the technique used 

to train and assess the model are detailed. 

 

2.1 Experimental Data 

The neural network model was developed using the experimental data from the first World-Wide 

Failure Exercise (WWFE-I). The experimental data come from experiments conducted at a constant 

stress ratio (SR) on tubular specimens [10]. A total of 287 data points are taken from three loading test 

cases for five continuous fibre-reinforced polymer composite laminates [10]. The laminates considered 

in this study are listed in Table 1, along with their corresponding loading case. Further information on 

the experimental data and laminate characteristics may be found in [10] and [11]. 

 

 

Laminate Loading Case # Specimens Tested 

0˚ 1) σx versus τxy 34 

0˚ 2) σy versus τxy 16 

±85˚ 3) σx versus σy 21 

(90˚/±30˚/90˚)s 4) σx versus σy 47 

(90˚/±30˚/90˚)s 5) σx versus τxy 44 

(0˚/±45˚/90˚)s 6) σx versus σy 43 

(±55˚)s 7) σx versus σy 82 

 

Table 1. The laminates, loading cases, and the number of specimens tested per laminate at various 

stress ratios [10]. 

 

 

2.2 Neural Network Development 

A fully connected neural network with an input layer of 13 units and one output unit was modelled 

using PyTorch [12]. The laminate layup sequence, lamina properties, and loading test case are captured 

as inputs to the network. The first five input features are the lamina strength properties in tension (σ1
T, 

σ2
T), compression (σ1

C, σ2
C), and shear (τ12). The following three input features are stress ratio inputs 

(σx, σy, τxy), which identify the loaded axes and whether the applied loads are tensile or compressive. For 

instance, a sample that has been loaded both axially (σx) and circumferentially (σy) will have a stress 

ratio of σx=2 and σy=1 transmitted to the network if it is loaded axially at a rate twice that of the 

circumferential load. Along the same lines, the inputs are σx=-1 & σy=0 and σx=0 & σy=1, respectively 

if a specimen is uniaxially loaded in axial compression or circumferential tension. 

 

The last five input features provide the layup sequence to the neural network. The ply angles are 

entered sequentially, and the final input signals if the laminate is symmetric. With this configuration, 

the neural network can distinguish between laminates with the same angles in different sequences. An 

example of the inputs for a (0˚/±45˚/90˚) laminate tested at a stress ratio of σx=0.75 and σy=1 is shown 

in Table 2. 

 

The network’s single output was the failure vector’s length (L). The length is defined as 

𝐿 = √𝜎𝑥
2 + 𝜎𝑦

2 + 𝜏𝑥𝑦
2 (1) 

where σx is the axial failure strength, σy is the circumferential failure strength, and τxy is the shear failure 

strength. 
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Once formatted in a data matrix according to the input features, the experimental data was divided 

into two subsets: the train-validation (80%) and the test set (20%). Then, the training data’s regression 

inputs and the output were normalised. Mean normalisation of each data point (𝑥𝑑
(𝑖)

) was implemented 

using 

𝑥𝑑
(𝑖)

=
𝑥𝑑

(𝑖)
−  𝜇𝑑

𝜎𝑑
(2) 

where µd is the mean, and σd is the standard deviation of a given input feature (d). 

 

 

Category Input # Metric Example 

Lamina strengths 

[MPa] 

1 σ1
T 1950 

2 σ1
C 1480 

3 σ2
T 48 

4 σ2
C 200 

 5 τ12 79 

Stress ratios  

(σx:σy, σx:τxy, σy:τxy) 

6 σx 0.75 

7 σy 1 

8 τxy 0 

Layup and orientations 

[degrees] 

9 Ply 1 0 

10 Ply 2 +45 

11 Ply 3 -45 

12 Ply 4 90 

Cases of symmetry 13 Yes (1)/No (0) 1 

 

Table 2. The neural network input features. 

 

 

A hyperparameter grid search using 3-fold cross-validation [13] was used to determine the ideal 

combination of the learning rate (α), weight decay (λ), and network architecture. Network configurations 

with 5 to 25 units per hidden layer and 2 to 3 hidden layers were tested. The neural networks were 

trained for 2,000 epochs using Adaptive Moment Estimation (Adam) and the Mean Squared Error 

(MSE) as the evaluation metric [13]. The set of hyperparameter values that resulted in the average lowest 

MSE on the validation set was selected. 

 

 

  
  

Figure 1. The neural network’s predictions for test cases (a) #2 and (b) #4. 
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3 RESULTS AND DISCUSSION 

The neural network with two hidden layers, 20 units per layer, a learning rate (α) of 0.01, and a 

weight decay (λ) value of 0.001 reached the lowest MSE. The MSE with this network configuration was 

0.0442 on the test set. Figure 1 demonstrates how the neural network fits the experimental data closely. 

For test cases 1 through 7, the errors were 7.2%, 17.0%, 8.6%, 3.9%, 5.3%, 6.5%, and 22.7%, 

respectively.  The error was determined by averaging the differences between each experimental point’s 

actual and predicted lengths. The error on the experimental data was less than 10% for five of the seven 

test cases (i.e., 70%). This improves the results obtained by the best analytical models from the WWFE-

I. The best theories from the WWFE-I could not predict failure within ±10% in 40% of the test cases 

[14]. The significant errors for test case 2 can be attributed to a lack of data points. When randomly 

splitting the data between the train-validation and test sets, large gaps in stress ratios appear. These gaps 

make it difficult for the neural network to learn the trend in the data. On the contrary, the large error for 

test case 7 can be attributed to the scatter in the data for samples tested at similar stress ratios. The neural 

network predicted the average lengths instead of overfitting each data point. 

  

The neural network generated all the laminates’ failure envelopes. The predicted failure boundaries 

were compared to three conventional analytical composite failure theories. Namely, the model’s 

predictions were compared to the Tsai-Wu [15], Cuntze [16], and Puck [17] theories. The failure 

envelopes from the WWFE-I were extracted from the figures presented in [15], [16], and [17] using a 

graph digitiser. As illustrated in Figure 2, the predicted failure envelopes more closely match the 

experimental data than those reported in the WWFE-I. Furthermore, the neural network outperforms the 

analytical theories in regions with a high density of points. 

 

Conversely, as seen in Figure 2(a) and (b), predictions suffer when there are gaps in the data. 

Predictions become unreliable in regions with gaps since the failure boundary predictions appear random 

and jagged. Due to the black-box nature of neural networks, it is difficult to determine the cause of this 

behaviour. 
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Figure 2. The failure boundary predictions for test cases (a) #1, (b) #5, (c) #7, (d) #6. 
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Next, predictions between the first biaxial point and the uniaxial point near stress ratios of infinity 

were inaccurate. Figure 2(c) shows that the boundary predictions along the x-axis do not follow the 

data’s trend. This occurs due to the binary encoding of infinity stress ratios, which caused a discontinuity 

in the predicting function. For example, a data point on the x-axis of Figure 2(c) will have stress ratio 

inputs of σx=±1 & σy=0; however, the first biaxial point off the x-axis will have a non-zero number input 

for σx and σy=±1. The same issue is not present near stress ratios of zero because the inputs are 

continuous in that range. Due to this, for areas around stress ratios of infinity, predictions should be 

limited to the region after the first biaxial data point (see Figure 2(d)).  

 

4 CONCLUSION 

This work presented a methodology for using neural networks to predict the failure strengths of 

multiple fibre-reinforced polymer laminates. The neural network learned the relationships between the 

input features and failure strengths for all laminates. Training on this smaller data set (i.e., only 2D 

experimental data) did not significantly impact the predictive performance. Nonetheless, the model still 

showed improved predictive ability over theories developed within the scope of the WWFE-I. Thus, the 

proposed framework can improve estimates of the failure strength, given that sufficient data is available. 

As discussed, the current model has unreliable predictions where there are gaps in the experimental data 

(e.g., around the transition region from uniaxial to biaxial loading). Overall, this work demonstrates the 

potential of a neural network-based failure model in practical applications for informing the strength 

and sizing of composite parts. 
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