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ABSTRACT 

Previous automation solutions for the production of composite parts are limited to the production of 

large series due to high investment cost and large floor space needed. For this reason, a significant 

proportion of these parts is still produced manually, resulting in high error rates, scrap, as well as slow 

production speeds and high labour cost. At the moment, the biggest challenge for automation is the high 

implementation efforts and the lack of robotics know-how in companies. Therefore, within this paper, 

we present an approach for the flexible automation of composite preforming using collaborative robots 

(cobots). The intention is to enable the cobot to work hand-in-hand with the human worker for maximum 

flexibility. In addition to the development of robotic draping tools, a supervised learning approach is 

adopted for cobot programming. Three-dimensional data in the form of point clouds is collected, pre-

processed and augmented. Afterwards, scene flow approximation approaches are used to predict future 

motions, allowing the understanding of relationships between geometric features and motions. In this 

way, we make a first step towards automated robotic draping. 

1 INTRODUCTION 

The production of continuous fibre-reinforced composite parts with highly-complex geometries 

poses major challenges to companies because they have to fulfil high quality demands, e.g., in aviation 

or automotive applications. Accordingly, it is essential to avoid defects such as wrinkles, gaps, loops, or 

undulations when handling or draping (forming) the limp textile materials. On the one hand, the manual 

production of such composite parts is challenging, as handling and draping the limp, partly sticky textiles 

is difficult to learn. Composite producing companies rely on their employees who are skilled in dealing 

with the limp textiles and benefit from their sensorimotor skills that allow them to produce even highly 

complex composite parts. In addition, their cognitive abilities combined with low machine and tool costs 

enable fast product changeovers. However, human errors and the resulting waste of materials as well as 

slow production speeds and labour costs in high-wage countries have a negative impact. In addition, 

many workers suffer from wrist or back problems. [1] Despite this, around a third of all composite parts 

are currently produced in elaborate manual processes [2]. 

On the other hand, manually performed process steps can be reduced by automating the process. 

Large companies from aviation and automotive industries already use automated processes to produce 

composite parts. However, the used special machines, robot cells, or production lines are very expensive 

and require, in some cases, a disproportionate amount of floor space. The biggest challenge for the 

introduction of automation solutions such as robotics, especially for Small and Medium-sized 

Enterprises (SMEs), lies in the huge implementation efforts as well as a lack of know-how in robotics. 
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For these reasons, automating composite production is often perceived as a cost driver without direct 

value creation and is therefore not considered by SMEs. [3, 4]  

Therefore, this paper presents an approach for the flexible automation of composite part production 

using collaborative robots (Cobots) in complex draping tasks. We present here both the robot draping 

tools and the robot learning algorithm used. For maximum flexibility, the intention is to enable the robot 

to collaborate with humans. We chose a supervised learning approach to learn the motions of the manual 

draping process. As no data is available for manual draping processes, our approach includes the 

collection, pre-processing, and augmentation of the data, as well as implementation, training and 

evaluation of the machine learning model. The data is collected as RGB-D video data and processed to 

point clouds to get a three-dimensional representation. Three-dimensional machine learning operations 

are used to predict the motions. In this way, the relationship between the process movements and the 

geometric features of the used mould can be revealed. 

2 RELATED WORK 

2.1 Automated Preforming 

Preforming is the production of a three-dimensional, near-net-shape dry reinforcement structure. The 

preforming process consists of four steps: cutting the layers, handling them to the mould, forming 

(draping) them onto the mould, and joining the individual layers so that the resulting preform can be 

processed in further process steps, e.g., resin transfer moulding or vacuum-assisted resin infusion. 

Preforming processes are well suited for automation, as automated technologies already exist for the 

individual process steps. For example, cutting of textile plies can be automated by using CNC cutters or 

automated pick and place, and stacking can be realised by a range of available gripping technologies. 

[5, 6] Draping is the process step most difficult to automate, especially for complex geometries. To 

ensure the desired mechanical properties, the draping must be done without angular or positional 

deviation of the fibres. For this purpose, relative movements of the reinforcement fibres, so-called 

shearing, must be made possible in order to adapt the textiles to the desired geometry. However, the 

textile tends to wrinkle as soon as it is deformed in three planes simultaneously. [6, 7] 

Various approaches to automated draping exist. However, with machines, draping textiles into 

complex three-dimensional geometries is often limited. In stamp forming, the textile is placed on a fixed 

lower mould, while a movable stamp serves as the upper mould. The textile ply is heated and remains 

in the mould under pressure until the binder solidifies. To improve pressure distribution, segmented or 

elastomer stamps can be used. [6] Another approach is the usage of a membrane as upper mould, which 

forms the textile ply by an applied vacuum. With both processes, flexibility is limited with regard to the 

production of different geometry variants and the achievable part complexity. If more flexibility is 

needed, robotic draping can be used. In this process, the degrees of freedom of a robot are used for 

draping with special end-effectors. In total, five operating principles can be distinguished: flexible 

materials, reconfigurable mechanisms, pixel-based systems, deformable membranes and ‘strike-out’ 

preforming. [8, 9] In summary, mostly part- and geometry-specific approaches are available for 

automated preforming, but their limit is the flexible automated production of small series. Therefore, 

we aim at a cost-effective and flexible automation of draping by using human-robot collaboration 

(HRC). Initial research approaches exist for this process, but no standardised end-effectors are available. 

2.2 Human-robot collaboration 

In fully automated preforming, robots and machines perform the same action repeatedly with low 

tolerance. Thus, this process is carried out correctly if the path planning and automation solution are 

designed correctly. In contrast, in hand lay-up, even the most experienced experts perform their work 

differently in each operation as they use their visual and tactile skills to achieve the desired result. Since 

the properties of reinforcement textiles always vary slightly and their behaviour is not precisely 

predictable, the working environment in composite preforming is highly variable. Consequently, there 

is no rigidly programmable robotic path that achieves a perfect result every time. [1, 6] It is therefore 

necessary to develop semi-automated preforming that does not require disproportionately high 
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investment costs and floor space, and does not limit the flexibility with regard to the possible variety of 

variants and part complexity. Furthermore, the solution should not eliminate the advantages of human 

work such as sensory-motor skills. Accordingly, the collaboration of humans and robots in preforming 

is promising, since the strengths of humans (cognitive flexibility, feeling for materials, and dexterity) 

and robots (tirelessness, high speed, and precision) can be exploited in this scenario. [3, 4] For HRC, a 

shared workspace is needed that is subject to strict safety requirements. In order to avoid the usual robot 

safety precautions such as fences or light barriers, Cobots with limited payload and speed can be used. 

They are equipped with additional sensor technology allowing to stop in case of a collision with humans. 

Nevertheless, sharp tools can only be used with complex safety measures. [10] 

First approaches exist for the implementation of HRC in preforming. An analysis of a manual 

preforming process in [3] shows that the introduction of HRC in preforming can be advantageous by 

means of efficiency. However, it shows that HRC will not work for all lot sizes and part complexities. 

In [4], five interaction modes for the handling and draping of reinforcement textiles are defined, 

concentrating on big plies for boating goods or aviation. Human factors within HRC preforming are 

investigated in [11], revealing that the cobot is considered as a technical assistant doing a good job in 

the lay-up process. Furthermore, there are ongoing research projects on the topic of HRC in composite 

preforming, e.g., RaCPro (Germany), DrapeBot (EU), or JARVIS4Pre (Austria).  

2.3 Supervised learning for robot teaching 

Despite the success of classical trajectory planning models, they remain unsuitable for the draping 

task due to the complexity of modelling the manipulation of limp textiles. Additionally, Learning from 

Demonstration (LfD) and Reinforcement Learning (RL) approaches often require a simulation for 

refining their policies which is challenging on its own, particularly given the dynamic properties of the 

textiles used in preforming. Therefore, we use supervised learning to learn the motions of manual 

draping. The most significant limitation of traditional Artificial Neural Networks (ANNs) is the inability 

to cope with computational complexity of high-dimensional data. Contrary to this, Convolutional Neural 

Networks (CNNs), a class of ANNs predominately used in pattern recognition, are using specialised 

layers that are applied to local regions of the input to cope with this limitation [12]. Therefore, CNNs 

can be used to process three-dimensional data, e.g., in the form of point clouds. A point cloud is a set of 

data points with three-dimensional cartesian coordinates that is able to include additional features such 

as RGB values or surface normal. By providing essential geometric, shape, and scale information, point 

clouds enhance the understanding of the captured environment. [13] Machine learning on point clouds 

has been recently used in numerous applications, for example robotics, autonomous driving, and virtual 

reality. However, applying convolutional operations on 3D point cloud data is challenging because of 

the point clouds’ generally irregular, unstructured, and unordered nature (Figure 1). [13, 14] 

 

Figure 1: Challenges of point cloud data [13] 

Applications for deep learning on point clouds include shape classification, segmentation and object 

detection. Early approaches that convert point clouds into a structured form can be broadly divided into 

voxel-based and multi-view based approaches. In contrast, contemporary methods can be applied 
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directly to raw point clouds so that no explicit information loss is introduced. Point-based methods can 

be divided into pointwise multi-layer-perceptron (MLP), convolutional-based, and graph-based 

networks. [13, 14] The basis for point-based methods is PointNet [15] to directly apply deep learning 

on unstructured point clouds. This approach is further developed to PointNet++ [16] that extends 

PointNet for local region computations to capture fine geometric structures. ConvPoint [17] is a three-

dimensional continuous convolutional approach that defines convolutional kernels on a continuous 

space and assigns the weights of adjacent points by determining their spatial distribution relative to a 

centre point. In [18], a graph-based network for point clouds is proposed, Dynamic Graph CNN 

(DGCNN). It constructs a graph in the feature space, which is dynamically modified. 

With the advances in machine learning on point clouds, three-dimensional motion analysis with point 

clouds has emerged as a research area called scene flow estimation. The scene flow refers to the motion 

field of points in point clouds (Figure 2). Hence, it helps to understand the 3D motion of points in a 

dynamic environment. FlowNet3D [19] directly learns the scene flow with both, point-level features 

and motion features, from two sequential point clouds through the use of a flow embedding layer. The 

Bi-PointFlowNet [20] uses a hierarchical architecture and introduces the bidirectional flow embedding 

(BFE) layer that learns features along forward and backward directions. In [21], a pair of self-supervised 

losses is introduced to enable the network to be trained on unlabelled datasets.  

 

Figure 2: Scene Flow between two point clouds [19] 

Predicting future points clouds from a set of consecutive point clouds is called point cloud prediction 

which is predominately researched for tasks in autonomous driving, such as path planning and collision 

avoidance. Point cloud prediction relies on past point clouds to predict the future state of a scene. Future 

point clouds can be estimated by applying scene flows to the previous frames or by directly generating 

a new set of future points. [22, 23] MoNet [22] is a novel motion-based neural network for point cloud 

prediction that extracts motion and content features using a motion- and content-encoder. Furthermore, 

a recurrent neural network called MotionRNN is proposed to capture temporal correlations between 

features. [23] provides a self-supervised Point Cloud Prediction network that converts the input point 

clouds into spherical coordinates and maps them to image coordinates. SPFNet [24], is a Long Short-

Term Memory (LSTM) autoencoder model for sequential point cloud forecasting. In [25], a self-

supervised point cloud prediction architecture is developed to extract temporal features and predict 

future frames with promising results. 

3 APPROACH 

In this section, we present the robot tools developed, the data collection approach, the pre-processing 

and augmentation of the data, and the machine learning models used. 

3.1 Robot tools for human-robot preforming 

In the development of robot draping tools, special emphasis is given to low cost and ease of 

manufacturing. Furthermore, as the tools shall be used in HRC, it is mandatory to guarantee safe tools 

without sharp corners or edges. The tool should also be flexibly usable for different geometries. 

Point Cloud 1: Nx3

Point Cloud 2: Mx3

Scene Flow: Nx3
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Therefore, three draping tools are developed (Figure 3 a)-c)). The squeegee is used to drape outside 

edges, while the silicone roller is used to drape inside edges. In addition, for draping larger textile areas, 

the silicone stamp can be used, which allows a roll-off motion. In this way, the robot can take on simple, 

repetitive draping tasks, while the human is playing to their strengths when draping the complex part 

areas. Three individual tools are used for data collection. Additionally, to avoid time-consuming tool 

change during the collaborative draping, we also combined them in one tool (Figure 3 d)). 

 

Figure 3: Robot draping tools for human-robot preforming 

3.2 Data collection 

To capture the draping process, the different robot draping tools are attached to an extension which 

facilitates the handling and provides space for a fiducial marker (ArUco marker). The ArUco markers 

are used to identify each tool and encode its pose. For the generation of the markers, OpenCV is used 

(marker size 6 6 x bits, dictionary size = 50). For data acquisition, three moulds with different 

geometries are selected (Figure 4, a)-c)). Another mould is used for testing (Figure 4, d)).  

 

Figure 4: Moulds a) – c) for data acquisition, d) for testing (left); draping process (right) 

As the focus of the data collection lies on the relation between the robot tool motion and the geometric  

features of the respective mould, the process is conducted without textiles. In this way, no material waste 

is created. Furthermore, the mould is not covered by textile, resulting in lower complexity of the process 

and consequently producing a higher amount of data is possible. An expert for draping is asked to carry 

out the process. By video capturing, the existing tacit knowledge is extracted and saved in the form of a 

human digital shadow [26]. A stereo camera (Intel RealSense Depth Camera D455) is used to record the 

process from bird’s eye view as RGB-D video sequence. Each scene is recorded as two separate colour 

and depth streams, resulting in each frame consisting of a colour and a depth image. The Intel RealSense 
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Silicone stamp
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Viewer is used for recording, while the videos are saved as bag-files. The default camera settings are 

used to achieve highest point coverage. In total, 568 GB of data are created, consisting of 190 RGB-D 

videos. For each data acquisition mould, 60 videos are recorded, while extra 10 videos are captured for 

the testing mould. With an average of 880 frames per video, 167.200 data points can be extracted. 

3.3 Preprocessing 

To assure a data format that machine learning models can efficiently analyse, the pre-processing of 

the raw data is mandatory. The pre-processing pipeline shown in Figure 5 allows the conversion of the 

captured RGB-D data into point cloud data to approach motion prediction.  

 

Figure 5: Pre-processing pipeline for conversion of RGB-D data into point cloud data 

Within the first step, the spatial stream alignment, the two single RGB- and depth-images are aligned 

and form a merged RGB-D image. Afterwards, the resulting RGB-D image is converted to a point cloud 

by deprojecting its pixels to three-dimensional point coordinates. The deprojection of every pixel of the 

RGB-D image to point coordinates results in a point cloud that consists of XYZ coordinates and 

corresponding RGB values with a dimension of N x 6. The number of points N varies from frame to 

frame depending on the valid depth values within the frame. In step three, the data quality is increased 

by the application of data cleansing techniques that remove non-finite and duplicate points within the 

data. The collected images show the entire working area. However, the draping process is conducted 

within the immediate surrounding of the mould. Therefore, the point cloud is manually cropped using 

an axis-aligned bounding box that allows the reduction of computational complexity. After the cropping 

process, the dimension of the point cloud is reduced from N x 6 to N’ x 6 with N’ < N. The number of 

points N’ per frame is estimated to be in the range of 20.000 to 50.000 points depending on the respective 

mould. Applying machine learning with this high amount of data points is computationally expensive 

and does not allow the training on multiple batches as the number of points is not fixed to one size. For 

this reason, within the last step, the data is downsampled using Farthest Point Sampling (FPS) [27]. As 

output data a M x 6 array results that includes XYZ coordinates and RGB values of the point cloud. The 

array is saved to the HDF5 dataset and annotated with mould and tool name. Figure 6 shows the RGB-

D data in different steps of the pre-processing pipeline. 

 

Figure 6: RGB-D data in different steps of pre-processing pipeline 
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3.4 Data augmentation 

During data collection, the mould is placed in a fixed location to guarantee consistency and 

reproducibility. This results in a potential overfitting problem where the model learns absolute motions 

instead of relations between the tools’ motions and mould. Therefore, data augmentation techniques are 

used to diversify the data and expose the model to more varied examples during training. By creating 

new, slightly modified versions of the original data, it is possible to improve the generalisation ability 

and avoid overfitting. Similar to data augmentation in the image domain, rotation, flipping, and scaling 

are chosen as transformations (Figure 7). 

 

Figure 7: Data augmentation techniques applied to original data 

To not change the dimension of the data, the transformations are applied pointwise. Thus, the 

transformations are applied by multiplying the corresponding transformation matrix with all points of 

the point cloud. In total, six augmentations are realisable by combining the augmentation techniques. 

With the angle 𝜃, the two flipping values 𝑎, 𝑏 ∈ {−1,1}, and a scaling factor 𝑣 ∈ {0,1}, the rotation 

matrix 𝑅𝑧(𝜃), the flipping matrix F(a,b), and the scaling matrix S(v) are defined as follows:  

𝑅𝑧(𝜃) = (
cos 𝜃 −sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

) , 𝐹(𝑎, 𝑏) = (
𝑎 0 0
0 𝑏 0
0 0 1

) , 𝑆(𝑣) = (
𝑣 0 0
0 𝑣 0
0 0 𝑣

) (1) 

Random parameters are generated, and the parameterised transformation is applied to the pre-

processed data. To assure that no artificial motion is added to the scene, all frames corresponding to the 

same video are augmented with the same parameters. 

3.5 Model architecture 

We suggest a model architecture that enables learning on the pre-processed, augmented data. The 

model architecture used is based on contemporary point-based and scene flow operators, and is inspired 

by recent research on point cloud prediction by [25]. To learn the respective relations between the 

geometric structure of the mould and the motions, the past four frames of point clouds 𝑥𝑡−3, … , 𝑥𝑡 serve 

as inputs for the models. By using two frames the velocity of objects in a scene can be determined, while 

at least three frames are obligatory to identify second-order dynamics such as acceleration. Further 

contextual information is gathered using the fourth frame. [25] Fundamentally, the network architecture 

consists on the one hand of a feature extractor layer that uses a point-based feature extractor directly 

applied to the input point cloud. Feature extractors proposed in PointNet ++ [16] and DGCNN [18] are 

used. On the other hand, a flow embedding layer from FlowNet3D [19] is built to learn the scene 

a) Original b) Rotation c) Flipping d) Scaling
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dynamics between two point clouds. First, from every frame the features are extracted pointwise with a 

feature extractor layer. Afterwards, the network computes the flow dynamics with a flow embedding 

layer. The process is repeated, a final feature extractor layer is used, and the extracted features are 

forwarded to the refinement layer that outputs a motion vector of the dimension 𝑀 × 3 for each point in 

the point cloud 𝑥𝑡. By adding the motion vectors to the point cloud, a new set of points is computed that 

can be used to compare the predicted point cloud to the original scene. To predict point clouds of more 

distant future, the prediction 𝑥𝑡+1can be used and applied to the model autoregressively. 

 

Figure 8: Model architecture based on [25] 

To assure a better fit of Deng and Zhakor’s approach [25] to the preforming use case, the model 

architecture is adjusted to accept input point clouds (𝑀 × 6) including the three-dimensional point 

coordinates and the RGB information. Furthermore, the non-occluded point cloud representation of the 

mould is used as additional input which is intended to support the capturing of the mould’s geometric 

features. The model architecture is varied (see Table 1) to evaluate the choice of the feature extractor 

and to investigate the effect of the additional mould input. 

Model Name Architecture Feature Extractor Downsampling 

ConvPoint Original Continuous Convolution [17] Yes 

ConvPointM Extended Continuous Convolution [17] Yes 

EdgeConv Original Edge Convolution [18] No 

EdgeConvM Extended Edge Convolution [18] No 

PNPP Original PointNet++ [16] Yes 

PNPPM Extended PointNet++ [16] Yes 

Table 1: Model variations 
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4 EVALUATION 

To evaluate our work, we train and test several state-of-the-art approaches for scene flow estimation 

[16–18] using our data. Additionally, we train and test these models by including the 3D models of the 

moulds during the training. This section summarizes the details as well as the quantitative results.  

4.1 Experimental Setup 

The models were trained using an Nvidia Tesla V100-SXM2-16GB and the date was split into 

training, test, and validation subsets using a 70-20-10 split. During the training, we use the loss function 

from [25] that combines the Earth Movers Distance (EMD) with Chamfer Distance (CD) proposed in 

[28]. These are widely used distance measures for point cloud data. EMD finds a bijection, 𝜑 , between 

two point clouds, P and Q, that minimizes the sum of distances between corresponding points 

𝐸𝑀𝐷(𝑃, 𝑄) = min
𝜑∈𝑃→𝑄

∑ ‖𝑝 − 𝜑(𝑝)‖2𝑝∈𝑃     (2) 

CD calculates the sum of squared distances between corresponding nearest neighbours in P and Q.  

𝐿𝐶𝐷(𝑃, 𝑄) = ∑ min
𝑞∈𝑄

||𝑝 − 𝑞||
2

2 
 𝑝∈𝑃 + ∑ min

𝑝∈𝑃
||𝑝 − 𝑞||

2

2 
 𝑞∈𝑄    (3) 

In our work, we follow [25], where the loss L is a weighted sum of EMD and CD  

𝐿(𝑃, 𝑄)  = 𝛼𝐿𝐶𝐷(𝑃, 𝑄)  + 𝛽𝐿𝐸𝑀𝐷(𝑃, 𝑄)    (4) 

where α and β are hyperparameters for the weights of CD and EMD, respectively.  

4.2 Results 

As mentioned above, we compare the performance of model architecture mentioned in Section 3 

with three different feature extractors, ConvPoint [17], EdgeConv [18], and PNPP [16]. Each one has a 

mould-variant (with “M” suffix) that includes the CAD model of the mould as input. As a baseline, we 

train the models using only a single mould (propeller blade shown in Figure 4. a). Additionally, we 

compare these to the identity function, i.e., predicting the same input. Results of the baseline comparison 

are shown in Table 2. 

Model Epochs CD EMD 

ConvPoint 15 5.9*10-5 3.8*10-3 

ConvPointM 7 3.4 *10-5 2.1 *10-3 

EdgeConv 15 1.7 *10-5 1.4 *10-3 

EdgeConvM 8 2.5 *10-5 1.9 *10-3 

PNPP 15 3.0 *10-5 4.1 *10-3 

PNPPM 14 3.7 *10-5 3.9 *10-3 

Identity N/A 1.4 *10-5 1.2 *10-3 

Table 2: Results of baseline comparison 

As seen in Table 2, using EdgeConv feature extractor yields the lowest error rates for both variants 

(with and without mould information). These results are confirmed by visual inspection (Figure 9) where 

we see more noise and artefacts in the predicted images of the M-models. Furthermore, EdgeConv 

models have less noise than the others. However, the M-models have less accuracy across all feature 
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extractors. This could be due to the increased number of parameters involved in these models. 

 

Figure 9: Visual representation of results from experiments using the different models 

To examine the effects of the data augmentation, we trained the PNPP model using the augmented 

and not augmented datasets and test it using both datasets. Table 3 shows the results of training and 

testing using the different combinations of the datasets. Training on the augmented dataset significantly 

reduces both CD and EMD when tested on the augmented or not augmented test set. 

Training Testing CD EMD 

Not augmented Not augmented 3.7*10-5 4.1*10-3 

Augmented Not augmented 2.1 *10-5 1.4 *10-3 

Not augmented Augmented 3.3 *10-5 4.0 *10-3 

Augmented Augmented 2.1 *10-5 1.3 *10-3 

Table 3: Effects of training the PNPP model using the augmented dataset 

Additionally, we examine how well the model generalizes to unknown moulds by training the 

different models on the entire dataset, containing data from different moulds and then test it on a 

previously unseen mould. Table 4 shows the results of training the regular ConvPoint, EdgeConv, and 

PNPP models using data from a single mould (Propeller blade) and using multiple moulds. Training 

with multiple moulds only increases the accuracy of the PNPP model but not the others. This could be 

attributed to using abstraction levels forming a hierarchy of local features, as opposed to the two other 

models that extract global features. 

To sum up, the results show that EdgeConv model achieves the highest results compared to the other 

model variations. Additionally, the augmentation increases the accuracy overall, when testing over the 

augmented and not augmented datasets. Finally, the models show higher CD and EMD on average when 

trained on multiple moulds and tested on an unknown one, i.e., the models are unable to generalize well. 

This can be attributed to the limited data in terms of number of moulds; the data we collected contains 

only four moulds. This can be examined further either by collecting data from more moulds, or by using 

a sliding window approach in the training to learn local trajectories relative to the mould geometry under 

the window instead of a global trajectory for the whole mould. 

 

a) Ground 

Truth

b) ConvPoint c) ConvPointM d) EdgeConv e) EdgeConvM f) PNPP g) PNPPM
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Mould Model Epochs CD EMD 

Propeller 

Blade 

ConvPoint 15 1.4*10-4 1.7*10-2 

EdgeConv 15 2.9 *10-5 1.6 *10-3 

PNPP 15 5.6 *10-5 4.8 *10-3 

Multiple 

Moulds 

ConvPoint 15 4.9*10-4 9.6*10-3 

EdgeConv 8 3.4*10-5 2.1*10-3 

PNPP 15 4.0*10-5 3.4*10-3 

N/A Identity N/A 2.5*10-5 1.2 *10-3 

Table 4: Effects of training the models using the multiple moulds vs a single mould 

5 CONCLUSION 

This paper presents an approach for the flexible automation of composite preforming using 

collaborative robots. A robot arm is employed to perform draping. Supervised learning techniques are 

used which include the added challenge of data acquisition. We show how to transfer scene flow 

approximation approaches into composite preforming, making a step towards automated robotic 

draping. However, this work only shows how the different approaches estimate the motion of the robot 

tools (controlled by the human hand). This work is a step towards the automation of the draping process. 

The next step is to transfer these results to the robot. Thus, the results obtained here have to be used to 

generate a trajectory given the mould geometry. Additionally, the trajectory is to be transformed from 

the task space to the configuration space. For future work, the generalization to new moulds can be 

investigated. Finally, the findings can be transferred to the combined draping tool (Figure 3, d), and an 

automatic tool selection depending on the different geometric features should be integrated. 
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