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ABSTRACT 

In this work a study for the selection of the more appropriate beam theory-based kinematic 

assumptions to describe the through the thickness kinematics of an adhesive joint or laminated beam in 

all its length will be presented. The scope is the use of the beam theory-based kinematic assumptions 

for the calculation of the fracture toughness expressed by the J-integral based on data from a Digital 

Image Correlation analysis. The cases of the path independent J-integral and the path dependent 

generalised J-integral are studied. Three different kinematic assumptions are considered to describe a 

Double Cantilever Beam specimen: the Timoshenko beam theory, a Layerwise model and a semi-

Layerwise model. The best use of each model is highlighted for nine study cases. Finally, a discussion 

is presented on how the Digital Image Correlation analysis data points from experiments, that will be 

inserted into an analytical model, must be chosen to be compatible with the assumptions of the 

subsequent data reduction scheme. For the comparison with the experimental results, data for the 

displacements from a high-speed loading mode I via a Split Hopkinson Pressure Bar apparatus will be 

used. The Wedge Insert Fracture method was used on Double Cantilever Beam specimens of a metal-

composite joint.  

 

1 INTRODUCTION 

The use of composites on a large scale has increased the need for a thorough understanding of their 

mechanical behavior, not only under quasi-static but in elevated loading rates, i.e., dynamic 

loading/impact, as well. To secure the structural integrity of a structure made by laminated materials 

under various loading conditions, the interlaminar fracture toughness must be found in order to 

investigate the most common failure mode of laminated materials. The J-integral [1] is commonly used 

for the calculation of the fracture toughness of beam-type delamination specimens (Fig. 1a) like the 

composite laminates and the adhesive joints subjected to a variety of loading rates. When the loading 

rate is significant the generalized J-integral or crack tip energy flux integral is used for the calculation 

of the fracture toughness [2]. To calculate the J-integral or the generalized J-integral kinematics, such 

as displacements and rotations, of the specimen must be used based on the selected integration path. 

That kinematics can be calculated based on analytical models or via experimental methods like the 

Digital Image Correlation (DIC) method. 

In this work we are focus on the combination of the J-integral or the generalized J-integral with the 

DIC method for the calculation of the fracture toughness of beam-type delamination specimens. The 

main idea is to create a method that can be used regardless the loading condition the specimen type and 

the integration path. This need exists due to the fact that in some cases in order to add considerations for 

extra phenomena, like the high-speed loading conditions [3-4] considering the vibrational response of 

the specimen the analytical solutions are quite complex especially when non-common fracture 

specimens are used. But also, it will be a useful tool for the calculation of fracture toughness. The first 

step for that is to select the beam theory-based kinematic assumptions to model the kinematics of the 

specimen. The main capability of the selected model is to describe (Fig. 1b) the kinematic field obtained 

from the DIC in order the input data to be compatible (the values of the measurement points could 

theoretically be calculated analytically, Fig. 1b) with the analytical assumptions. It must be mentioned 

that in some cases a model cannot describe the kinematic field but there are compatible points (Fig. 1b). 
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In a resent work [4], the authors comment on the importance of the correct selection of the data points 

from DIC.  

 

 
 

Figure 1: a) Graphical representation of some terms used in the manuscript, b) The compatibility of the 

points  

 

In the next sections we study three different beam theory-based kinematic assumptions. Each one 

more complex than the other. The capabilities of each will be presented based of nine case studies for a 

Double Cantilever Beam (DCB) specimen. Since the calculation of the generalized J-integral is the main 

outcome, the DIC extracted kinematic field from a DCB specimen loading under high-speed loading 

will be also used to find the best analytical model. Although the outcome of the paper is also useful for 

static loading conditions. In the next paragraph we analyse the conditions for which data from a DIC 

analysis can be imported into a formula from the fracture toughness, calculated based on a contour 

integral, using beam theory-based kinematic assumptions.  

 

The formula for the fracture toughness, using a contour integral, is calculated as a function of the 

specimen kinematics and their derivatives, based on the assumptions of an analytical model. Most 

analytical models in the literature use two main assumptions to model a beam-type delamination 

specimen: 1. A beam theory, 2. An interface assumption (clamped, rigid, semi rigid, elastic [5]). When 

we want to use an analytical formula for the fracture toughness but instead of calculating the variables 

(e.g., kinematics) analytically, we introduce them experimentally, we must make sure that the introduced 

variables are compatible with the analytical model. In other words, the selected data from the DIC should 

be the same or similar as what the analytical model would produce. For that two cases occur: 1. The 

analytical model can capture the full field kinematics of the DIC analysis (especially the though the 

thickness variation), 2. The inserted DIC points could theoretically be calculated by the analytical model.  

A simple example for the second point is the transverse deflection on the crack tip coordinate of a similar 

(same material at each sub-laminate) and symmetric (same thickness at each sub-laminate) DCB 

specimen. If the analytical model from [4] will be used for example, the analytical value of the deflection 

on the crack tip coordinate will be zero. Thus, if a formula based on this model was used for the fracture 

toughness to implement data from the DIC, the results would be misleading because at the midplane of 

the DIC analysis the deflection is not equal to zero. Although the model in [4] is capable to calculate the 

fracture toughness on its own. This phenomenon occurs because the analytical models are capable to 

describe the strain energy of the specimen and thus, the fracture toughness even if they cannot capture 

the full field kinematics. 
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To be more clear let’s analyse the most common J-integral formula for a DCB specimen [6]: 

𝐽 =
𝑃(𝑤𝑢

′ − 𝑤𝑏
′ )

𝑏
. (1) 

where: 𝑃  is the load, 𝑏  the width of the specimen and 𝑤𝑢
′ , 𝑤𝑏

′  are the transverse displacement 

derivatives for the upper and the lower sub-laminate on the loading points. 

Eq.1 provides a simple and elegant solution to calculate the fracture toughness with two assumptions: 

1. the specimen can be modelled as an Euler beam (there is no shear effects), 2. the method by which 

the derivative is calculated experimentally from the DIC. The first assumption refers to the validity of 

Eq. 1 to model the specimen and the second one on the selection of the material points in order to be 

compatible with the beam theory used.  

ESL beam theories, like Euler’s and Timoshenko’s, calculate the beam kinematics based on the 

beam’s midplane and assume a linear distribution of the axial displacements and a constant distribution 

for the transverse displacements. Although the DIC software provides a 2D displacement field in which 

the displacements vary in an arbitrary way through the beam’s thickness.  Eq. 1 can be used if the through 

the thickness transverse displacement on the loading point during the experiment remains constant in 

order, then to calculate the derivative as a finite difference. Τhe calculation of the derivative for the Eq. 

1, can use the axial displacements of two vertical points. By that, the definition of 𝑤′  becomes 

coincident with the kinematic rotation 𝜑 of the Timoshenko theory. Thus, the shear effects are also 

included. In this case the axial displacement must be linear through thickness.  

Thus, the following statement will be investigated, data points from a DIC analysis can be used on 

a J-integral formula only if the beam theory-based kinematic assumptions can capture accurately the 

through the thickness distribution of the displacements or at least the measurement points are 

compatible with the beam theory-based kinematic assumptions. 

2 THEORETICAL BACKROUND 

2.1 The J-integral 

In this section the formulas for the J-integral and the generalized J-integral are presented. For the 

generalized J-integral the cases for which the integral is path independent are also pointed out. 

 

The most common expression for the J-integral referred also as static J-integral is given as [6]: 

𝐽 = ∫ 𝜎𝑘𝑙�̂�𝑙

𝑑𝑢𝑘

𝑑𝑥
+ 𝑈𝑑�̂�1

 

𝛤

. (2) 

The generalized J-integral or crack tip energy flux integral is given as [2]: 

 

𝐽 = lim
𝛤→0

∫ 𝜎𝑘𝑙�̂�𝑙
𝑑𝑢𝑘
𝑑𝑡

+ (𝑈𝑑 + 𝑇𝑑)𝑐�̂�1
 

𝛤

𝑐
. (3) 

 

where: 𝜎𝑘𝑙 , 𝑢𝑘, are the stress and displacement tensors, �̂�, is the normal unit vector and 𝑐, is the 

velocity of the crack and 𝑈𝑑 , 𝑇𝑑, are the strain and kinetic energy density.  

 

In case of mixed mode loading the individual components of the fracture toughness can be calculated 

by separating the stresses, strains and the displacements into symmetric and antisymmetric fields [7]. 
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The J-integral is a path independent integral [6]. The generalised J-integral in general is not path 

independent, except in the immediate vicinity of the crack tip [7]. A case that the integral is indeed path-

independent is in steady state conditions, such as the propagation of a crack with constant velocity. But 

in this case the only relation between the problem variables (kinematics, strains, stresses) and the time 

variable is by the relation 𝜉 = 𝑥 − 𝑐𝑡 where 𝜉 is the coordinate travelling with the crack tip and 𝑐 is the 

velocity of the crack tip [7]. This assumption can be achieved in a very close region to the crack tip. But 

if no crack propagation is assumed the initiation fracture toughness can be calculated by a path 

independent integral if the problem variables are independent of time. Recent studies [3-4] show the 

dependency of the fracture toughness on the vibrational characteristics of the specimens. In this case the 

problem variables are dependent on the time variable even before crack propagation.  

 

The total derivative 
𝑑𝑢𝑘

𝑑𝑡
 from Eq. 3 can be expressed as:  

 

𝑑𝑢𝑘

𝑑𝑡
= −𝑐

𝜕𝑢𝑘

𝜕𝑥
+

𝜕𝑢𝑘

𝜕𝑡
. 

(4) 

Then, three cases arise: 

 

1. when  
𝜕𝑢𝑘

𝜕𝑡
= 0 the generalized J-integral is equal to the static J-integral [6].  

2. when the crack propagates the  
𝜕𝑢𝑘

𝜕𝑥
 is dominate on the 

𝜕𝑢𝑘

𝜕𝑡
 term close to the crack tip [6] thus, 

for crack propagation the J-integral is path independent only near the crack tip area. 

3. when no crack propagation is assumed but the specimen has a vibrational response the equality  
𝑑𝑢𝑘

𝑑𝑡
= −𝑐

𝜕𝑢𝑘

𝜕𝑥
  is valid only close to the crack tip. 

 

The third point can be proved by using the analytical expressions for the kinematics of a DCB 

specimen considering the vibrational response from [4]. It must be mentioned that if no crack 

propagation is assumed to have occurred the 𝑐 is set equal to zero at the final stage of the calculations 

not directly on Eq. 4 [4]. Thus, when the elastic vibration is considered the integration path must be 

close to the crack tip even for crack initiation. 

 

 

 

 

Figure 2: A beam element that contains terminologies, the eligible points and the distribution of the 

displacements for each beam theory-based kinematic assumptions 
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2.2 Presentation of the beam theory-based kinematic assumptions 

Three beam theory-based kinematic assumptions will be used in this work. The first one is the well-

known Timoshenko’s beam theory [8] the second one is a Layerwise (LW) theory with linear 

interpolation factors [9] and the third is a semi-Layerwise theory (semi-LW) [10], as originally proposed 

by Szekrényes, which consists of several Equivalent Single Layer (ESL) theories jointed together with 

constraints, each ESL can have different kinematic assumptions.  

For the Timoshenko theory the kinematics are expressed as [7]: 

𝑢(𝑥, 𝑧, 𝑡) = 𝑢𝑜(𝑥, 𝑡) + 𝑧𝜑(𝑥, 𝑡), (5) 

𝑤(𝑥, 𝑧, 𝑡) = 𝑤𝑜(𝑥, 𝑡). (6) 

where: 𝑢, 𝑤  are the are the axial and transverse displacement, 𝑢𝑜, 𝑤𝑜  are the membrane 

displacements and 𝑡 is the time variable. The kinematic field is presented in Fig. 2. 

The inserted points must be calculated on the midplane for the axial and the transverse displacement 

(Fig. 2). The rotation can be calculated by using two vertical points as 𝜑 = (𝑢1 − 𝑢2)/ℎ or by the 

assumption 𝑤′ = 𝜑 [11]. A major problem with the Timoshenko theory is the constant variation of the 

transverse displacement thus, only one point can be compatible for the transverse displacement and two 

for the axial. 

To solve that problem, a linear variation in the transverse displacement through thickness can be 

achieved by the following LW model is [9]: 

𝑢(𝑥, 𝑧, 𝑡) = ∑ 𝑈𝐼(𝑥, 𝑡)𝛷𝛪(𝑧)

𝑁

𝐼=1

, (7) 

𝑤(𝑥, 𝑧, 𝑡) = ∑ 𝑊𝐼(𝑥, 𝑡)𝛷𝛪(𝑧)

𝑁

𝐼=1

. 
(8) 

where: 𝑈𝐼 , 𝑊𝐼 are the axial and transverse displacement of the 𝐼 analytical layer, 𝑁 is the total number 

of the analytical layers (in LW theories the terms nodes and numerical layers are commonly used due to 

their implementation on finite elements. But in this work due to the analytical approach, we use the term 

analytical lines and layers to avoid confusion) and 𝛷 is the linear interpolation factor (Fig. 2). The 

inserted points must be calculated at each analytical line (Fig. 2). This model gives the advantage that 2 

points can be at the same time compatible in both displacements even with the use of one layer. Using 

more layers, the full field can be captured but also more DIC points must be used.  

The formula for the J-integral can then be expressed as: 

𝐽 = ∑ −𝑄�̃�
𝐼 𝜕𝑊𝐼

𝜕𝑥
− 𝑁𝑥𝑥

𝐼
𝜕𝑈𝐼

𝜕𝑥

𝑁

𝐼=1

. 
(9) 

where: 𝑄�̃�
𝐼
, 𝑁𝑥𝑥

𝐼  are the stress resultants in each analytical line which can be expressed based on the 

applied load. Thus, Eq. 6 can be calculated only by the load and the kinematics.  

One major drawback is that if more layers are used the calculation of the J-integral becomes quite 

rigorous. If higher order interpolation factors are used the number of the analytical lines will be too 

large. Also points at the boundaries of the specimens are needed which are difficult to be calculated by 

the DIC [12]. 
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To achieve variations in displacements up to a 3rd order polynomial without the use of many layers 

the following kinematic field is assumed [10]: 

𝑢𝑖(𝑥, 𝑧𝑖, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑢0𝑖
(𝑥, 𝑡) + 𝜃𝑥𝑖

(𝑥, 𝑡)𝑧𝑖 + 𝜙𝑥𝑖
(𝑥, 𝑡)𝑧𝑖

2 + 𝜆𝑥𝑖
(𝑥, 𝑡)𝑧𝑖

3, (10) 

𝑤𝑖(𝑥, 𝑧𝑖 , 𝑡) = 𝑤0(𝑥, 𝑡) + 𝑤0𝑖
(𝑥, 𝑡) + 𝜃𝑧𝑖

(𝑥, 𝑡)𝑧𝑖 + 𝜙𝑧𝑖
(𝑥, 𝑡)𝑧𝑖

2 + +𝜆𝑧𝑖
(𝑥, 𝑡)𝑧𝑖

3. (11) 

where: 𝑢0, 𝑤0  and 𝑢0𝑖
, 𝑤0𝑖

 are the global and local membrane displacements respectively, 

𝜃𝑥𝑖
(𝑥), 𝜃𝑧𝑖

(𝑥) are rotations based on the 𝑥 and 𝑧 axes and 𝜙𝑥𝑖
, 𝜙𝑧𝑖

, 𝜆𝑥𝑖
, 𝜆𝑧𝑖

 are higher order rotations. In 

this form (Eq. 10-11) the kinematic field is described by a third-order shear deformation theory (TSDT) 

with cubic stretching but it can also be described with more simple models by eliminating the higher 

order terms. In this work two ESL theories will be used in each sub-laminate. For the semi-Layerwise 

model the number of points used is related with the order of the ESL that will be used. For Eq. 10,11 at 

least four points must be measured for each ELS, thus sixteen points in total. If the variations between 

those points can be described by the polynomial order of kinematics (Eq. 10-11), then those points are 

compatible with the analytical model and the through the thickness kinematics can be described by the 

analytical model. Those points can be fitted thus, the problem with the boundary points is not necessary. 

The J-integral formula will be discussed in a latter publication by the authors. 

2.3 Capabilities of each beam theory-based kinematic assumptions 

In this section the capabilities of each model will be investigated, using the following nine cases (Fig. 

3 a, b) for a DCB specimen: 

1. Similar symmetric LP (Loading Point) -EP (End Point) Path 

2. Similar symmetric CT (Crack Tip)-EP Path 

3. Similar symmetric CT-CT Path 

4. Similar symmetric (𝐵 ≠ 0) LP-EP Path 

5. Similar symmetric (𝐵 ≠ 0) CT-EP Path 

6. Similar symmetric (𝐵 ≠ 0) CT-CT Path 

7. Dissimilar asymmetric LP-EP Path 

8. Dissimilar asymmetric CT-EP Path 

9. Dissimilar asymmetric CT-CT Path 

 

Where 𝐵 is the axial-bending coupling matrix. The CT-CT Path is referred to the generalized J-

integral. The first six cases are pure mode I loading and the last three mixed mode loading. In Figure 3 

the kinematic distributions are presented, as they result from a simple FE analysis which is not included 

in this work for brevity. 

 

 
 

LP-EP

CT-EP
CT-CT
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Figure 3: a) Presentation of the different integration paths, b) Kinematic fields comparison 

 

Regarding the LP-EP path Timoshenko theory can be used because at the loading point the 

kinematics distribution can be captured accurately. Away for the crack tip even for the cases 4,7 the 

distribution of the axial displacements its linear and the transverse displacement has a quite constant 

value because the effect of the higher-shear orders is small. The results for that cases are not presented 

for brevity. The Timoshenko theory is also able to be used for case 2,8 if the following is made: 𝜑 ≅ 𝑤′ 

because only the rotations can be captured correctly (Fig. 3). In all these cases the other two theories 

can also be used but Timoshenko theory gives simpler solutions. The only case that the Timoshenko 

model cannot be used in these cases is for specimens with very large thicknesses like composite 

sandwich specimens.  

The LW approach is very handy to calculate the total fracture toughness using elegant solutions in 

cases like case 5 even with only one analytical layer in every adherent.  

For the rest of the cases (case 3,6,9) the semi-LW theory can be used. Even if Timoshenko theory 

can capture the total fracture toughness in case 7,8 to calculate the individual components a path close 

to crack tip must be used in order to have more accurate results [7]. Thus, the semi-LW approach 

dominates when mixed mode fracture is studied and when expressions based on the generalized J-

integral are used. 

 

Table 1 gives in brief the best use of each theory. 

 

 Advantages Disadvantages 

Timoshenko • Elegant solutions for cases 1, 4 

• Cannot be used for the 

generalized J-integral 

• Cannot be used for mode 

partitioning 

• Cannot be used if the 

kinematics distributions are 

not following the theories 

assumptions 

LW 
• Elegant solutions for cases 1,2, 4, 

5 (without to be a function of the 

elastic properties) 

• Lots of layers are needed to 

capture more complex 

kinematic fields 

Timoshenko
LW
Semi-LW
2D Elasticity

Timoshenko 
Theory capture 

the axial 
displacements

The two selected points are 
compatible with the LW model

Timoshenko Theory cannot 
capture the transverse 

displacements, although there is a 
compatible point

The semi-LW model gives the best 
accuracy for the distributions on

the bonded region
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• Points at the boundaries of the 

specimen are needed which are 

difficult to be calculated. 

Semi-LW 

• Usable in all nine cases 

• Can provide direct mode 

partitioning 

• It’s the only model that can be 

used for generalized J-integral 

• Needs a lot of DIC points and 

good measuring accuracy 

 

Table 1: Advantages and disadvantages of each model 

 

3 THE EXPERIMENTAL SET-UP 

The above theoretical framework was applied to a case of a metal-composite adhesive joint. The 

metal-composite adhesive joint under-investigation consists of two adherents: one consisting of a 

titanium sheet and the other a woven composite. Two aluminum backing beams were added to prevent 

the plastic deformation of the titanium sheet during testing. The testing in mode I loading was executed 

in a Split Hopkinson Pressure Bar (SHPB) apparatus. For the mode I test the Wedge Insert Fracture 

method (WIF) was used on Double Cantilever Beam (DCB) specimens (Fig. 4). The displacement rate 

and the crack initiation time was measured using a high-speed camera. To avoid any artificial vibration 

of the specimen the camera was mounted on the configuration. For the DIC pattern a controlled airbrush 

was used to create the desirable speckle size after a trial-and-error procedure. During the experiments a 

constant loading velocity was achieved on each sub-laminate. 

 

 

 
 

Figure 4: The experimental set-up 

 

 

4 COMPARISSON WITH EXPERIMENTAL RESULTS 

The kinematic field as obtained from the DIC analysis for the axial and the transverse 

displacements is presented on Fig. 5a: 
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Figure 5: a) The DIC obtained kinematic field b) Use of each model to describe the DIC results 

 

The DIC analysis was performed on the commercial software GOM Aramis with a facet size equal 

to 15 pixels to follow the rule of 3-7 pixels into a speckle [3]. A Photron® Fastcam SA4 at 60000 fps 

was used with a resolution of 320x160 pixels. The shutter speed was set according to the frames per 

second. 1μm accuracy was achieved, calculated using a static video [12]. Points close to the boundaries 

are excluded due to the facet size [12]. It must be mentioned that a small rigid body motion was observed 

in the results for the axial displacements but it does not affect the results. Also, the transverse 

displacement is not symmetric by the crack tip due to the dissimilarity and the asymmetry of the adhesive 

joint. 

 

Then each model was used to investigate if it can describe the DIC obtained kinematics. As presented 

on Fig. 5b the Timoshenko beam model cannot capture both axial and transverse displacements. The 

LW model can be used for the calculation for the total fracture toughness since two points are compatible 

with the DIC kinematics but to capture the individual mode contributions, in which the full field is 

needed, 13 layers must be used. The semi-LW can be fitted with great accuracy with the results, using 

Eq. 10-11. Since using Eq. 9 for 13 layers is more rigidus. The semi-LW model will be the one with 

which the fracture toughness will be calculated in the later stages of this work. 

 

5 CONCLUSIONS 

In this work three beam theory-based kinematic assumptions were studied in order to be used for the 

experimental calculation of the fracture toughness using DIC kinematics.  

The main conclusion of this work is: 

 

• Data points from a DIC analysis can be used in a J-integral formula only if the beam theory-

based kinematic assumptions can accurately capture the through the thickness distribution of 

the displacements or at least if the measurement points are compatible with beam theory-based 

kinematic assumptions. 
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The conclusions regarding the analytical models are: 

 

• The semi-LW model has the best capabilities and spectrum of applicability and is proposed as 

the solution for the calculation of the generalized J-integral in high-loading speed delamination 

scenarios and also for the cases when mixed mode loading conditions exist. An added advantage 

is the ability to calculate the individual components for the fracture toughness 

• The best use for the LW model is the problem of case 5. 

• When the Timoshenko beam model is used the user must be very careful in order to not surpass 

the limitations and the assumptions of the model 
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