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ABSTRACT 

Two analytical modelling approaches for determining nonlinear buckling responses of damaged 

composite panels are presented. The models consider localized delamination growth and nonlinear 

buckling responses during damage growth and thus extend current capabilities of analytical models for 

predicting the compression-after-impact strength of composite laminates. Modelling localized 

delamination growth is facilitated by employing a problem description in cylindrical coordinates with 

the energy release rate being analysed along the delamination boundary with the aid of an analytical 

crack-tip element. Nonlinear buckling responses during damage propagation are modelled by employing 

a so-called extended total potential energy. Predictions of both models are in good agreement with more 

exacting finite element analyses and corresponding experimental tests. The models outline a path 

towards developing (semi-)analytical models that may be used for designing damage tolerant composite 

structures. 

 

1 INTRODUCTION 

Damage tolerance is a major design driver for aerospace composite laminates. Structures are 

designed to withstand design ultimate loads in the presence of so-called barely visible impact damage 

(BVID). BVID comprises delamination damage alongside matrix cracks and possibly fibre fracture. The 

effect of BVID on the laminate strength is most pronounced for compressive in-plane loading, which is 

a characteristic load case in designing damage tolerant composite structures within the aerospace 

industry, i.e. compression-after-impact (CAI) loading [1]. Predicting the CAI behaviour and strength is 

utmost challenging and requires high-fidelity numerical models [2]. Owing to their enormous 

computational cost, although practically useful, such models are not suitable for design practice and also 

impede some fundamental insight into the interplay of delamination buckling with various failure 

mechanisms [3]. However, available (semi-)analytical models do not capture the complexity of the 

associated deformation processes in enough detail to predict CAI strength reliably and provide detailed 

understanding of the crucial failure mechanisms in CAI loading; and, thus, do not offer themselves as 

damage tolerant design models. Given the complexity and associated uncertainty regarding the structural 

response towards attaining its ultimate strength, the current certification requirement in the aerospace 

industry is that BVID should not grow under limit (once in a lifetime) load conditions [4]. Strength 

limits are determined by coupon testing of laminates containing BVID, which does not allow for new 

design concepts and highlights the need for analytical models capable of predicting the compressive 

strength of such laminates, which has yet to be accomplished. Considering that the main damage 

inducing failure mechanism of CAI loading scenarios is buckling-driven propagation of delaminations, 

analytical models capturing sufficient features of this failure mechanism will constitute a significant 

advance of the current state-of-the-art. 

In this context, the current work resolves two key issues that impede the applicability of current 

analytical models. First, localized delamination growth is accounted for predicting the onset of 

delamination propagation. Second, nonlinear buckling responses beyond the initiation of damage growth 

are considered. Both characteristics are incorporated in (semi-)analytical modelling approaches [5–7] 



Anton Köllner 

 

that facilitate efficient predictions of the initiation of buckling-driven delamination growth and the study 

of the interactions between delamination buckling and failure mechanisms. The models advance the 

state-of-the-art towards analytical modelling of CAI strengths of composite laminates. 

 

2 MODELS 

2.1 Model I – Damage allowable strains 

Model I considers buckling-driven delamination propagation which is the main failure mechanism 

in CAI loading. Currently, it is assumed that delamination damage can be represented by a single circular 

delamination with the respective sublaminate having constant thickness. The geometric model of a 

composite plate with an embedded circular delamination is shown in Fig. 1. The plate can be regarded 

as a semi-infinite plate where loading is applied in the form of far-field compressive strains, 𝜀0
𝑥 and 𝜀0

𝑦
, 

respectively, directed along respective Cartesian coordinate axes (x, y). The current modelling approach 

considers delaminations that are within the range associated with thin-film delaminations (𝑎 ≤ 0.1), 

thus local buckling responses of the sublaminate (part 1 in Fig. 1) are modelled. 

 

 

 
 

Figure 1: Geometric model of a composite plate with a circular delamination. 

 

The problem is formulated using cylindrical coordinates (𝑟, 𝜑, 𝑧). This is deemed beneficial regarding 

the representation of the displacement field in terms of radially symmetric and asymmetric shape 

functions as well as the direct analysis and evaluation of the energy release rate along the delamination 

boundary. The Rayleigh–Ritz method is employed to determine nonlinear buckling responses; 

trigonometric series are used to approximate the displacement field, thus: 

 

𝑢(𝑟, 𝜑) =  [𝜀0
𝑥𝑟 cos2(𝜑) + 𝜀0

𝑦
𝑟 sin2(𝜑)]

+ ∑ ∑ sin (
𝑚𝜋𝑟

𝑅
) [𝑎𝑚𝑛

𝑢 sin(2𝑛𝜑) +𝑏𝑚𝑛
𝑢 cos(2𝑛𝜑)]

𝑁𝑢

𝑛=0

𝑀𝑢

𝑚=1

, 

(1) 

𝑣(𝑟, 𝜑) =  [−𝜀0
𝑥𝑟 cos(𝜑) sin(𝜑) + 𝜀0

𝑦
𝑟 cos(𝜑) sin(𝜑)]

+ ∑ ∑ sin (
𝑚𝜋𝑟

𝑅
) [𝑎𝑚𝑛

𝑣 sin(2𝑛𝜑) +𝑏𝑚𝑛
𝑣 cos(2𝑛𝜑)]

𝑁𝑣

𝑛=1

𝑀𝑣

𝑚=1

, 

(2) 

𝑤(𝑟, 𝜑) =  ∑ ∑𝑐𝑚𝑛
𝑤 cos (

(2𝑚 − 1)𝜋𝑟

2𝑅
) cos (

(2𝑛 − 1)𝜋𝑟

2𝑅
)

𝑁𝑤

𝑛=1

𝑀𝑤

𝑚=1

+ ∑ ∑∑ sin (
𝑚𝜋𝑟

𝑅
) sin (

𝑛𝜋𝑟

𝑅
) [𝑎𝑚𝑛𝑜

𝑤 sin(2𝑜𝜑) +𝑏𝑚𝑛𝑜
𝑤 cos(2𝑜𝜑)]

𝑂𝑤

𝑜=1

𝑁2
𝑤

𝑚=1

𝑀2
𝑤

𝑚=1

, 

(3) 

where u, v and w describe the radial, circumferential and out-of-plane displacements respectively. The 
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parameters 𝑎𝑖𝑗
𝑢,𝑣

, 𝑏𝑖𝑗
𝑢,𝑣

,  𝑐𝑖𝑗
𝑤  and 𝑎𝑖𝑗,𝑘

𝑤 , 𝑏𝑖𝑗𝑘
𝑤  are sets of generalized coordinates that are subsequently 

comprised within a single set 𝑞𝑖. Under uniaxial loading (along the x-direction, see Fig. 1), the transverse 

extension of the parent laminate is considered by 𝜀0
𝑦
= −𝜈12

par
𝜀0
𝑥, with 𝜈12

par
 being the major Poisson’s 

ratio of the parent laminate. 

The strain energy of the sublaminate (𝑊s) is calculated by 

 

𝑊s =
1

2
 ∫ ∫ 𝜀𝐼

0𝐴𝐼𝐽𝜀𝐽
0 + 2𝜀𝐼

0𝐵𝐼𝐽𝜅𝐽 + 𝜅𝐼𝐷𝐼𝐽𝜅𝐽 𝑟
𝑟

d𝑟
𝜑

d𝜑, 
(4) 

with the in-plane strains (𝜀𝐼
0) and curvatures (𝜅𝐼) being 
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 respectively. 

(5) 

Note that owing to the description in cylindrical coordinates the in-plane (𝐴𝐼𝐽), coupling (𝐵𝐼𝐽) and 

bending (𝐷𝐼𝐽) stiffness matrices exhibit a dependency on the angle 𝜑. However, with the aid of algebraic 

manipulations, the strain energy 𝑊s  (Eq. (4)) can be determined analytically for arbitrary stacking 

sequences, thus: 𝑊s = 𝑊s(𝑞𝑖, 𝜀0
𝑥 , 𝜀0

𝑦
, 𝐸11, 𝐸22, 𝐺12, 𝜈12, 𝑡ply, 𝑅, 𝜃𝑛) , where besides the material 

parameters, the fibre orientations of all n layers in the sublaminate (𝜃𝑛) as well as the radius (R) and ply 

thickness (𝑡ply) are provided symbolically, making the energy expression ideally suited for conducting 

parametric studies. 

Contact between the sublaminate and the base laminate is considered by introducing constraint 

conditions on the buckling displacement at pre-defined control points 𝑝𝑚, thus augmenting the strain 

energy by terms 𝑊p = ∑ 𝑞𝑚
p
(𝑤(𝑝𝑚) − (𝑐𝑚

p
)
2
)𝑀

𝑚  for M control points, where 𝑞𝑚
p

 are Lagrange 

multipliers representing the contact forces and 𝑐𝑚
p

 is a measure representing the offset between 

sublaminate and base laminate [5]. Nonlinear buckling responses are determined by solving the set of 

nonlinear algebraic equations 𝜕𝑊 𝜕𝑞𝑖
⁄ = 0, with 𝑊 =𝑊s +𝑊p and the parameters 𝑞𝑚

p
 and 𝑐𝑚

p
 being 

added to 𝑞𝑖. 
With the nonlinear buckling response determined, the energy release rate (ERR) is calculated with 

the aid of a crack-tip element, as proposed in [8]. The formalism is adapted to the current problem 

description in cylindrical coordinates, which is described in detail in [5]. Following the virtual crack 

closure technique, the total ERR G can be determined by 

 

𝐺 =
1

2
 [𝑐11(𝑛ct

𝑟 )2 + 𝑐22(𝑚ct)
2 + 𝑐33(𝑛ct

𝜑
)
2
+ 2𝑐12𝑛ct

𝑟𝑚ct + 2𝑐13𝑛ct
𝑟 𝑛ct

𝜑
+ 2𝑐23𝑛ct

𝜑
𝑚ct], 

(6) 

where 𝑛ct
𝑟  and 𝑛ct

𝜑
 are the crack-tip forces in radial and circumferential directions, respectively, and 𝑚ct 

is the crack-tip moment. The parameters 𝑐𝑖𝑗 (provided in [5]) comprise compliances of the sublaminate 

and the base laminate as well as respective thickness measures. Mode I and mode II contributions of the 

ERR can be obtained following the non-standard mode separation as described in [9], thus: 

 

𝐺I =
1

2
 [−√𝑐11𝑛ct

𝑟 sin(Ω) + √𝑐22𝑚ct cos(Ω + Γ)]
2
, 

(7) 

𝐺II =
1

2
 [√𝑐11𝑛ct

𝑟 cos(Ω) + √𝑐22𝑚ct sin(Ω + Γ)]
2
, 

(8) 

with Γ = sin−1[𝑐12(𝑐11𝑐22)
−1 2⁄ ], where mode III contributions are determined by 𝐺III = 𝐺 − 𝐺I − 𝐺II. 

The mode-mix parameter depends only on the delamination depth and remains constant for thin-film 
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configuration at 24° [5, 9]. The ERR is monitored along the deformation path for each equilibrium state 

determined. The critical energy release rate 𝐺c is calculated using the B-K-fracture criterion [10]. 

 

2.2 Model II – Nonlinear buckling responses considering damage propagation 

Model II addresses the issue of describing nonlinear buckling responses beyond the deformation state 

associated with the onset of damage propagation, e.g. the initiation of delamination growth, which may 

have significant effects on the load carrying capacity of composite structures. The model employs a 

novel analytical framework presented in [7]. Fig. 2 shows the geometric model of a damaged composite 

plate strip loaded under uniaxial compression. Multiple damage mechanisms comprising two 

delaminations (see 𝐿1 and 𝐿2) and matrix cracked layers are considered. The depths of the delaminations 

are characterized by the parameters 𝑎1 and 𝑎2, respectively. Matrix cracks are characterized by a matrix 

crack density 𝐷mc being the ratio of the ply thickness to half the distance between two matrix cracks. 

The matrix cracks are assumed to be evenly distributed within the area of the delaminations. 

 

 

 
 

Figure 2: Geometric model of a composite plate with a circular delamination. 

 

The in-plane (𝐴𝐼𝐽), coupling (𝐵𝐼𝐽) and bending (𝐷𝐼𝐽) stiffness entries for the matrix cracked regions 

are determined with the aid of the Equivalent Constrained Model (see [11]). A one-dimensional problem 

description is employed, where the plate strip is subdivided into five regions as illustrated in Fig. 3 also 

highlighting exemplarily damage parameters entering the problem formulation. 

 

 

 
 

Figure 3: Sketch showing all regions of the plate strip as well as damage parameters. 

 

A Rayleigh-Ritz formulation is employed. For each region, the out-of-plane displacement w(x) is 

approximated with the buckling expression of the clamped-clamped Euler case employing the 

coordinate system shown in Fig. 3. The in-plane displacement u(x) of each region is approximated by a 

sine series where contributions from rotations of the delaminated regions are considered (see [7]). The 

strain energy of the plate strip comprises the strain energies of each region, thus 𝑊s = ∑ 𝑊s
(𝑛)5

𝑛=1 , with 
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𝑊s
(𝑛) =

1

2
 𝑏∫ 𝐴11

eff(𝑛) (𝜀𝑥𝑥,0
(𝑛)
)
2
+ 2𝐵11

eff(𝑛)𝜀𝑥𝑥,0
(𝑛)
𝜅𝑥𝑥
(𝑛)
+ 𝐷11

eff(𝑛) (𝜅𝑥𝑥
(𝑛)
)
2

𝑥

d𝑥 
(9) 

and is determined analytically, i.e. 𝑊s = 𝑊s(𝑞𝑖, 𝜀0, 𝐴11
eff(𝑛), 𝐵11

eff(𝑛), 𝐷11
eff(𝑛), 𝐿1, 𝐿2, 𝐷mc

𝑗
). As described for 

Model I, contact conditions are enforced. The delamination lengths and the j matrix crack densities 

represent the damage parameters of the given problem, summarized in the set 𝜉𝑘 . Following the 

framework presented in [7], all damage parameters are described by functions of the structural 

configuration (in terms of the generalized coordinates 𝑞𝑖 ) and the applied loading ( 𝜀0 ), thus:  

𝜉𝑘 = 𝜉𝑘(𝑞𝑖, 𝜀0) , by exploiting the equality between thermodynamic forces (crack/damage driving 

forces) and corresponding material thresholds that holds during stable damage propagation. It should be 

noted that closed form expressions of the damage parameters cannot be derived. However, Taylor series 

approximations around the deformation state causing damage growth can be readily obtained (see [7]). 

By replacing the damage parameters in the total energy expression of the system, an extended total 

potential energy Π∗ can be derived, thus: 

 

Π∗[𝑞𝑖, 𝜀0, 𝜉𝑘(𝑞𝑖, 𝜀0)] = 𝑊s[𝑞𝑖, 𝜀0, 𝜉𝑘(𝑞𝑖, 𝜀0)] + Φ[𝜉𝑘(𝑞𝑖, 𝜀0)],   (10) 

 

where Φ  is the dissipative energy associated with the k damage parameters and  

𝜉𝑘 = {𝐿1(𝑞𝑖, 𝜀0), 𝐿2(𝑞𝑖, 𝜀0), 𝐷mc
𝑗
(𝑞𝑖, 𝜀0)} . Note that the energy terms associated with enforcing the 

contact conditions are omitted in Eq. (10). Nonlinear buckling responses during damage propagation are 

obtained by solving the set of nonlinear algebraic equations 𝜕Π
∗

𝜕𝑞𝑖
⁄ = 0. In the solution algorithm, it 

is expedient to use linear approximations of the damage parameters given that the step sizes employed 

are sufficiently small during damage propagation. It should be noted that the irreversibility condition of 

damage growth (2nd law of thermodynamics) is considered in the analytical framework (see [7]). 

 

3 RESULTS 

3.1 Damage allowable strains 

Model I has been validated by comparisons against results from experimental tests, as documented 

in [6], as well as three-dimensional finite element (FE) analysis, see [5]. Quasiisotropic stacking 

sequences are considered. The material parameters of the unidirectional (UD) plies are provided in 

Table 1.  

 

 

Material parameters 

𝐸11  128,0 GPa 

𝐸22  10.3 GPa 

𝐺12  6.0 GPa 

𝜈12  0.3 

𝐺c
I  0.268 N/mm 

𝐺c
II,𝐺c

III 0.738 N/mm 

Table 1: Material parameters of UD plies used in Models I and II. 

 

First, model predictions for three distinct types of sublaminates are compared against experimental 

data and FE simulations in Table 2, where the applied strain causing the initiation of delamination 

growth, i.e. threshold strains or damage allowable strains, is provided. In the experimental tests, this 

measure is determined with the aid of digital image correlation, see [6]. 
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Sublaminate Damage allowable / Threshold strains 𝜀th in 𝜇𝜀 
 Model predictions FE results Experiment 

 𝐺c
I 𝐺c

mix 

[0/90/90//…] 3410 3960 3580 3870 

[45/-45//…] 6020 7790 7280 7080 

[0/45//...] 2990 3580 3310 2890 

Table 2: Damage allowable strains; Model I, FE results and experiments (mean of three tests). 

 

In Table 2, two threshold strains are provided for Model I corresponding to a pure mode I fracture 

criterion and a mixed mode criterion using the B-K-law. Very good agreement is documented for 

sublaminates [0/90/90] and [45/-45]. Sublaminate [0/45] exhibits the largest deviations with 

experiments, despite predictions of Model I and FE analysis showing good agreement. The capability 

of Model I to evaluate the ERR along the delamination boundary accurately is highlighted in Fig. 4 

showing the normalized ERR (against 𝐺c) for sublaminates [0/90/90] and [0/45]. Figure 4 shows very 

good agreement between Model I and FE analysis, where the direction of delamination growth as well 

as the general behaviour of the ERR along the boundary is accurately predicted. 

 

 

  
Figure 4: ERR along the delamination boundary at 𝜀th for (left) [0/90/90] and (right) [0/45]. 

 

Subsequently, a parametric study has been conducted. Considering quasiisotropic laminates, three 

types of sublaminates are considered:  

(i)   stacking sequences exhibiting extension-twist/shear-bend coupling but no extension-shear  

       and bend-twist coupling;  

(ii)  stacking sequences with full mechanical coupling;  

(iii) stacking sequences exhibiting extension-shear and bend-twist coupling but with all coupling  

       stiffness entries being zero. 

Characteristic stacking sequences are selected for each type of sublaminate. For type (i), sublaminates 

with the stacking sequence [45/-45] and [45/0/-45] are considered. For type (ii), sublaminates [45/0] and 

[45/-45/0] are analysed. Type (iii) stacking sequences are represented by off-axis (multiple) 

unidirectional plies such as [452].  

In Fig. 5, results are evaluated in the form of damage allowable (threshold) strain against the 

geometric parameter 𝜒 providing a ratio of delamination diameter to delamination thickness. As in 

Table 2, predictions for a mode I and a mixed-mode fracture criterion are considered. The results are 

compared against three-dimensional FE simulations employing solid elements in Abaqus (see [5]). For 

all types of stacking sequences and delamination sizes considered, FE results fall in between the 

predictions of the model. For type (i), damage allowable strain predictions of the model are in good 

agreement with FE results employing the mixed mode criterion, with deviations of roughly 10%. 



23rd International Conference on Composite Materials 

Belfast, 1- 6th August 2021 

Employing a mode I criterion for such stacking sequences represents a strong conservative lower bound 

for damage allowable strain predictions. 

 

 

 

 
(a) stacking sequences type (i). (b) stacking sequences type (ii). 

 
(c) stacking sequences type (iii). 

Figure 5: Damage allowable strains against delamination size. 

 

As observed in Table 2, the largest deviations are present for type (ii) sublaminates with full 

mechanical coupling. As discussed in [5], such deviations are mainly associated with larger critical 

energy release rates determined by Model I than present in the FE analysis. This is related to 

discrepancies in determining mode I and mode II contributions of the ERR for such stacking sequences, 

where good agreement for the total ERR can be observed. It should be noted that for type (ii), mode I 

predictions of the model also provide a conservative lower bound for damage allowable strains. For type 

(iii), good agreement between the model and FE analysis is present, where, except for large 

delaminations, deviations are within 10%.  

The results highlight that outer layers with a stacking sequences of [45/-45] appear to exhibit the 

largest damage allowable strains, which also holds when a third layer is part of the sublaminate. This 

can be seen by comparing stacking sequences [45/-45/0] with [45/0/-45] in Figs. 5a and 5b respectively. 

The effect of the stacking sequence on the damage allowable strains can also be highlighted by 

comparing the results for the sublaminate [45/0] with [0/45] from the experiments in Table 2 (the 

corresponding delamination size is 𝜒 ≈ 100). 

 

3.2 Nonlinear buckling during damage propagation 

In an exemplary study employing Model II, nonlinear buckling responses of a damaged composite 

plate strip with a cross-ply layup [(0/90)s]7 are analysed. The depths of the delaminations are taken as  
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𝑎1 = 1/28  (between the first and second layer) and 𝑎2 = 3/28  (between the 25th and 26th layer), 

respectively (cf. Fig. 2). The material parameters of the UD plies are provided in Table 1. The length 

and width of the plate strip are taken as 200 mm and 10 mm respectively. The results of Model II are 

compared against geometrically nonlinear FE analyses employing the virtual crack closure technique to 

model delamination growth [7]. 

Two distinct nonlinear buckling responses can be observed by changing the initial length of the 

delaminations (𝐿1, 𝐿2), which are subsequently referred to as type A and type B, respectively. The 

corresponding structural responses are provided in Fig. 6 in terms of load against end-shortening 

(Figs. 6a and 6c) and load against midpoint deflection of the sublaminates (Figs. 6b and 6d). Both types 

of post-buckling behaviour are characterized by delamination growth being the dominant damage 

mechanism triggered in the post-buckling regime (matrix crack growth is not initiated within the range 

considered in Fig. 6). Moreover, contact between sublaminates occurs for both types once global 

buckling of the parent laminate is triggered. Type A responses are characterized by a limit point 

behaviour once delamination growth is caused (Figs. 6a and 6b). Restabilization of the post-buckling 

response at larger end-shortening can be observed with subsequent stable delamination growth. 

Contrary, type B responses are characterized by delamination growth that barely affects the post-

buckling behaviour, thus the post-buckling behaviour remains initially stable during delamination 

growth. However, unstable delamination growth, thus catastrophic failure of the plate strip is suddenly 

caused at later stages in the post-buckling range, which can be associated with the initiation of 

delamination growth of the second delamination (𝐿2), as documented in Figs. 6c and 6d. 

 

 

  
(a) Type A; load vs. end-shortening. (b) Type A; load vs. midpoint displacement. 

  
(c) Type B; load vs. end-shortening. (d) Type B; load vs. midpoint displacement. 

Figure 6: Nonlinear buckling responses with damage growth; type A: initial delamination lengths: 

𝐿1 = 39 mm,𝐿2 = 35 mm; type B: initial delamination lengths: 𝐿1 = 98 mm,𝐿2 = 78 mm. 
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4 CONCLUSIONS 

Two analytical modelling approaches have been presented which address some issues that currently 

impede the applicability of analytical models for laminate strength predictions of composites with BVID 

within the context of designing damage tolerant composite structures. The models accurately determine 

damage allowable strains and nonlinear buckling responses during delamination growth for idealized 

configurations of damage. Damage allowable strains that are in good agreement with more exacting FE 

analyses and experimental data have been obtained by considering a precise description of the post-

buckling deformation, full mechanical coupling, mode-mixity and an evaluation of the ERR along the 

delamination boundary and thus localized delamination growth. It should be noted that the idealized 

damage configuration does not represent the actual damage morphology of BVID. However, the model 

provides the capability of studying in detail the dominant failure mechanism of composites with BVID 

loaded under in-plane compression, i.e. buckling-driven delamination growth, where relationships 

between damage allowable strains with stacking sequences and delamination sizes can be determined 

and analysed. 

To determine the ultimate strength of damaged composite structures under in-plane compressive 

loading requires the modelling of nonlinear buckling responses that consider damage propagation. To 

date, such structural responses have solely been determined by means of purely numerical approaches 

(e.g. FE method). The model presented provides an approach to determine nonlinear buckling responses 

up to the ultimate strength by means of a semi-analytical approach. The approach is successfully applied 

to the problem of a composite plate strip exhibiting multiple damage mechanisms (delaminations and 

matrix cracked layers). Good agreement with FE analysis has been obtained. For employing the 

modelling approach to predict the ultimate strength of composite structures, extensions to two-

dimensional problem descriptions alongside a more complex representations of BVID are required. 
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