

Fakultät Maschinenwesen, Fakultät Verkehrswissenschaften "Friedrich List"

Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

ICCM 22 2019 – Melbourne, 12-16th August 2019

Eckart Kunze

Siegfried Galkin Benjamin Gröger Robert Böhm

Luise Kärger Maik Gude

- Motivation
- Draping Effects and Methodology
- Experimental approach
- Simulation approach
- Results

Motivation

Inclusion of processing effects into structural simulation

13 August 2019 Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

Draping effects - definition

2. Transverse compression

(due to compression or shear)

$tc = \frac{b_{tc}}{b} < 1$

$\varphi = \frac{n \, m_A * \frac{b_{g/tc}}{b}}{\rho \, t} = \varphi_{initial}$

3. Gapping (due to transverse tension)

 m_A – areal weight n – number of layers ρ – density of fiber t – thickness φ –fiber volume content

Methodical approach

13 August 2019 Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

Experimental approach

Material forming on structural level and reproducing effects on coupon level

Analysis of draping effects on structural level

Quantification and investigation of the effect limits

Quantification and representation on map with areas of interest

$\begin{array}{c|c} 20 & 19 & 18 \\ \hline 20 & 19 & 18 \\ \hline 20 & 19 & 18 \\ \hline 21 & 11 & 1 & 6 & 16 \\ \hline 21 & 11 & 1 & 6 & 16 \\ \hline 22 & 23 & 14 \\ \hline \end{array}$

- optical 3D-measurement with ATOS (GOM)
- Measurement of distances on the polygonised virtual image
- Visualization through colored regions (Shape ≙ spatial extension, Color ≙ Maximum measured)

Tested configurations

• 3 blank holder configurations

- 2 ply lay ups
 - a) Unidirectional 90° (2 plies)
 - b) Bidirectional 0°/90° (2 plies)

Forming on coupon level

Reproducing draping effects for mechanical testing

K

- Fabric samples with predefined deformation states
- One tool for each draping effect
 - Sliding mechanism for waviness and gaps
 - Shear frame for transverse compression
- Single fabric layers with draping effects
 - Local fixation of draping effects with binder
- Stacking of single layers
- Optical analysis of single layers and Computer tomography of the final stack
- Inferences on the fiber volume content φ are made from measured areal weight of fabric [3]

$$\varphi = \frac{n}{\rho \cdot t} \frac{m_{f,i}}{A_0}$$

 φ -fiber volume content $m_{f,i}$: fabric weight per area A₀ $m_{f,0}$: undeformed $m_{f,w}$: with waviness $m_{f,g}$: with gapping $m_{f,tc}$: with transverse compression

Schematic: sliding mechanism for waviness [3]

Simulation approach

A continuous virtual process chain

- Continuous virtual process chain: information from each simulation step is transferred to the next simulation step
- Macroscopic draping simulation model: prediction of material behavior and nonlinear deformation of the UD non-crimp fabric [4]
- Based on the deformation of each mesh element, draping effects like local fiber orientation and varying fiber volume content are processed and exported to a neutral file format for the mapping step [5]
- After mapping the draping information is available to a macroscopic damage model for UD composites

- Local fiber orientation
- Local fiber volume content
- Local waviness

Mapping from draping simulation mesh to structural simulation mesh

Processing information at each integration point of the structural simulation

Modelling on micro, meso and macro scale

Multiscale evaluation of draping effect

- Multiscale approach for evaluation of draping effects on the structural performance
- Variation of fiber volume content (FVC) and amplitude to wavelength ratio A/λ on different length scales
- Analysis of failure initiation and damage progression for varying fiber volume content at undulated and nonundulated areas
- Comparison of simulation results at different length scales with experimental results

Material model

Constitutive law - Fiber

- Fibers under shear load undergo large rigid body rotations
 → hypo-elastic damage material model is implemented as UMAT
- Rotation tensor l_{ij} is computed via deformation gradient F_{ij} :

$$l_{ij} = (\hat{\mathbf{e}}_i)_{\mathbf{m}} \cdot (\hat{\mathbf{e}}_j)_{\mathbf{p}} \quad \text{with} \quad (\hat{\mathbf{e}}_i)_{\mathbf{m}} = \frac{F_{ij} (\hat{\mathbf{e}}_j)_{\mathbf{p}}}{\|F_{ij} (\hat{\mathbf{e}}_j)_{\mathbf{p}}\|}$$

with $p~\cong$ co-rotational Abaqus CSYS and $~m~\cong$ Material CSYS

• Strains are rotated to the material coordinate system

$$\left(\boldsymbol{\varepsilon}_{ij}^{(t+\Delta t)}\right)_{\mathrm{m}} = \left(\boldsymbol{\varepsilon}_{ij}^{(t)}\right)_{\mathrm{m}} + l_{ik}l_{jl}\left(\Delta\boldsymbol{\varepsilon}_{kl}\right)_{\mathrm{p}}$$

• The calculated material stresses are rotated back to the co-rotational frame

$$\left(\sigma_{kl}\right)_{\mathrm{p}} = l_{ki} l_{lj} \left(\sigma_{ij}\right)_{\mathrm{m}}$$

• Fibers are considered non-Hookean linear elastic and transverse-isotropic, with the stiffness tensor defined in the local material coordinate system *m*: $C_{ijkl} = \lambda \delta_{ij} \delta_{kl} + 2\mu_T I_{ijkl}^{(s)} + \alpha \left(\delta_{ij} n_k n_l + n_i n_j \delta_{kl}\right) + 2 \left(\mu_L - \mu_T\right) I_{ijkl}^A + \beta n_i n_j n_k n_l$ where $n = (1, 0, 0)^T$ and $I_{ijkl}^A = \frac{1}{2} \left(\delta_{ik} n_j n_l + \delta_{il} n_j n_k + \delta_{jl} n_i n_k + \delta_{jk} n_i n_l\right)$

non-Hookean linear elastic material behavior

Material model

Constitutive law - Matrix

• Matrix material modelled with hypo-viscoplastic approach with isotropic damage

Viscoplasticity

• Yield surface proposed by [Tschoegel 1971] or [Raghava et al. 1973]

$$\Phi_{\rm pl} = 6J_2 + 2(\sigma_{\rm c} - \sigma_{\rm t})I_1 - 2\sigma_{\rm c}\sigma_{\rm t} = 0$$

• Plastic flow rule (in incremental form)

$$\Delta \varepsilon^{\rm pl} = \Delta \gamma \frac{\partial g}{\partial \sigma}$$

• Plastic multiplier $\Delta \gamma$ according to [Perzyna 1966]

$$\Delta \gamma = egin{cases} rac{1}{\mu} [F\left(\Phi_{\mathrm{pl}}
ight)]^{1/h}, & \Phi_{\mathrm{pl}} = 0 \ 0, & \Phi_{\mathrm{pl}} < 0 \end{cases}$$

• Plastic potential of a non-associative flow rule

$$g = \sqrt{\sigma_{\rm vm}^2 + \alpha p^2}$$

where α controls the volumetric component of the flow [Melro et al. 2013]

Yield surface proposed by Tschoegel or Raghava

Material model

Constitutive law – macroscopic UD composite

- Hypo-elastic anisotropic damage material model is implemented as UMAT
- Similar to the fiber model the stress in fiber direction is non-Hookean linear elastic until fiber failure (FF)
- Non-linear stresses σ pre inter fiber failure (IFF) are determined from effective stresses $\bar{\sigma}$: $\sigma = f(\bar{\sigma})$
- Failure initiation is modeled using Puck's failure theory [6] where the IFF is divided into three distinct modes (Mode A, B and C)

$$\sigma_n \ge \mathbf{0} : f_E = \sqrt{\left(\frac{1}{R_{\perp}^{(+)}} - \frac{p_{\perp\psi}^{(+)}}{R_{\perp\psi}^A}\right)^2} \cdot \sigma_n^2(\theta) + \left(\frac{\tau_{nt}(\theta)}{R_{\perp\perp}^A}\right)^2 + \left(\frac{\tau_{n1}(\theta)}{R_{\perp\parallel}}\right)^2} + \frac{p_{\perp\psi}^{(+)}}{R_{\perp\psi}^A} \cdot \sigma_n(\theta)$$

$$= \sqrt{\left(\frac{\tau_{nt}(\theta)}{R_{\perp\perp}^{A}}\right)^{2} + \left(\frac{\tau_{n1}(\theta)}{R_{\perp\parallel}}\right)^{2} + \left(\frac{p_{\perp\psi}^{(-)}}{R_{\perp\psi}^{A}} \cdot \sigma_{n}(\theta)\right)^{2} + \frac{p_{\perp\psi}^{(-)}}{R_{\perp\psi}^{A}} \cdot \sigma_{n}(\theta)}$$

- The fracture angle according to Puck's failure theory is computed using selective range golden section search algorithm [7]
- Using the fracture angle the damage in different axes directions is predicted

Failure envelope according to Puck in the τ_{12} vs σ_{22} plane [6]

Efficient and reliable fracture angle search algorithm [7]

Numerical and experimental quantification of draping effects Evaluation of the draping effect transverse compression

Superposition of numerically (contour plot) and experimentally generated draping maps UD 90° (2 plies)

BH 1 (free forming)

BH 2 (250 N @ all BHs)

- Outer contours correspond to each other
- Results match well in the corners areas with high shearing
- Deviations in the bottom area of the mold
- Results underneath or in front of blank holders do not match transverse compression found in front of the blank holders (red ellipses in BH2) were not seen in simulation → different friction behavior between experiment and simulation

BH 3 (250 N @ sel. BHs)

Outer contour —— Simulation

Experiment

- Influencing of draping effects through different BH configurations possible
- 13 August 2019 Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

transverse compression $t_c = \frac{b_{tc}}{b_r}$	ΔFVC (%)
= 0	= 0
> 0.9	< 11
> 0.8	< 25
> 0.7	< 43
> 0.6	< 67
> 0.5	< 100
< 0.5	> 100 wrinkles

Mechanical properties

Tensile properties of specimen with waviness

13 August 2019 Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

Transferring results to structural simulation

Closed process chain and further works

Main goal: prediction of a more realistic structural performance of a composite part

Conclusions

- Draping effects such as change of the fiber orientation, varying fiber volume content or waviness occur during the draping process
- Structural performance of composite parts is highly affected by local draping effects
- Reproduction and quantification of draping effects on structural and coupon level
- Comparison of the experimental and numerical results of coupons with waviness show a good agreement for a high amplitude to wavelength ratio
- Good local agreement of the draping simulation with the experimentally determined draping map, but the resolution of the experimental map must be refined through an improved evaluation method
- Numerically predicted position and magnitude of the draping effects are transferred from the draping simulation to the structural simulation

This work was performed within a research project (number 287275762) funded by

References

[1] Kärger L. et al., Development and validation of a CAE chain for unidirectional fibre reinforced composite components. Composite Structures 132: 350–358, 2015

- [2] Böhm R. et.al., Experimental Analysis of Draping Process Generated Material Imperfections in Textile Preforms, Proc.18th European Conference on Composite Materials 2018, Athens, Greece 24-28th June 2018
- [3] Galkin S. et.al., Experimental and Numerical Determination of the Local Fiber Volume Content of Unidirectional Non-Crimp Fabrics with Forming Effects, Journal of Composites Science, volume 3, Issue 1, 2019
- [4] Schirmaier FJ. et al., A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF). Composites Part A: Applied Science and Manufacturing 2017; 102: 322–335
- [5] Kärger L. et al., Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components. Composite Structures 2018; 192: 143–152
- [6] Puck A and Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Composites Science and Technology 2002; 62: 1633–1662.
- [7] Schirmaier FJ, et al. A new efficient and reliable algorithm to determine the fracture angle for Puck's 3D matrix failure criterion for UD composites. Composites Science and Technology 2014; 100: 19–25.

Fakultät Maschinenwesen, Fakultät Verkehrswissenschaften "Friedrich List"

Experimental Description of Draping Effects and their Influence on the Structural Behavior of Fiber Reinforced Composites

ICCM 22 2019 – Melbourne, 12-16th August 2019

Eckart Kunze

Siegfried Galkin Benjamin Gröger Robert Böhm

Luise Kärger Maik Gude

