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1 Introduction 

An artificial neural network (ANN) is a modeling 

approach to non-linear function approximation based 

on “artificial intelligence”. This technique is very 

useful in modeling phenomena that are not easily 

modeled analytically [1]. ANNs consist of a host of 

simple processors (neurons) that are interconnected 

in an organized architecture and are associated with 

a learning algorithm that resembles a biological 

process [1]. There are numeric values associated 

with the interconnections of the simple processors 

that are adjusted over time to emulate learning. The 

weights associated with the interconnections (a 

measure of the strength of the connections) encode 

knowledge about the problem domain. The 

architectures (neurons and their interconnections) 

provide a computational structure for simulating a 

biological neural network [2]. 

Learning in an ANN can occur in either a supervised 

or an unsupervised fashion [1]. A supervised 

approach uses a learning algorithm that creates an 

input/output mapping based on a labeled training set; 

thus, creating a mapping between an n-dimensional 

input space and m-dimensional output space. In this 

case, the network will learn a functional 

approximation from the input/output pairings and 

will have the ability to recognize or classify a new 

input vector into a correct output vector. On the 

other hand, an unsupervised learning architecture 

presents the network with only a set of unlabeled 

input vectors from which it must learn. In other 

words, the unsupervised ANN is expected to 

discover new knowledge as it characterizes the input 

vectors and produces outputs corresponding to 

learned patterns. 

The use of the ANN techniques in the context of 

materials science and engineering is considered an 

important extension of materials informatics [3-6]. 

This interdisciplinary study integrates computer 

science, information science, and other domain areas 

to provide new understanding and to facilitate 

knowledge discovery. Materials informatics is a tool 

for material scientists to interpret their acquired 

experimental data through the use of ANNs and 

machine learning approaches, integrated with new 

visualization schemes, more human-like interactions 

with the data, and guided by domain experts. It can 

also accelerate the research process and guide the 

development of new materials with desired 

engineering properties. Materials informatics is 

being fueled by the new and dynamic growth in 

information technology and is driving the interest in 

ANNs, data mining, machine learning, information 

retrieval, and other knowledge representation or 

discovery schemes in the engineering disciplines [7]. 

There are several recent published applications 

utilizing materials informatics and ANNs. Yassar, et 

al. [8] developed a novel computational model based 

on dislocation structures to predict the flow stress 

response of 6022 aluminum alloy. An ANN model 

was used to back-calculate the in-situ non-linear 

material parameters and flow stress for different 

dislocation microstructures [8]. Guessasma and 

Coddet [9] characterized the microstructural features 

of alumina-13 wt.% titania coating obtained under 

various atmospheric plasma spray (APS) conditions 

by implementing ANNs, which were detailed in the 

case of APS process parameters. These parameters 

were related to alumina, titania, porosity and 

unmolten particle contents. Yoshitake, et al. [10] 

used an ANN to model the changes in lattice phases 

as a function of their chemical composition and 

temperature. Reasonable phase predictions were 

made for several alloys, which agreed with X-ray 

measurements. The variation of the lattice constant 

with the concentration of individual alloying 

elements and temperature could be embodied into 

other computer programs, which deal with the 

partitioning of solutes between the different phases. 

Hu, et al. [11] used materials informatics to resolve 

the problem of materials science image data sharing. 

They presented an ontology-based approach that can 
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be used to develop annotation for non-structured 

materials science data with the aid of semantic web 

technologies. Sabin, et al. [12] evaluated an 

alternative statistical Gaussian process model, which 

infers a probability distribution over all of the 

training data and then interpolates to make 

predictions of microstructure evolution arising from 

static recrystallization in a non-uniform strain field. 

Strain, temperature, and annealing time were the 

inputs of the model and the mean logarithm of grain 

size was its output. 

A class of advanced engineering materials, i.e., 

nano-enhanced polymer composites and polymer 

nanocomposites [13], has progressively emerged as 

candidates for light-weight high-performance 

automotive composite structural parts. In these 

applications, improved specific properties and 

energy absorption characteristics are sought and 

polymer composites meet these requirements [14]. 

The scope of this study is to apply the ANN 

technique as a knowledge discovery tool on a 

commercially viable thermosetting polymer 

nanocomposite material system, i.e., vapor-grown 

carbon nanofiber (VGCNF)/vinyl ester (VE) 

nanocomposites. VGCNFs are commercially 

available nanoreinforcements with first-rated 

mechanical properties [19]. VEs are thermosetting 

resins suitable for automotive structural composites 

due to their superior properties in comparison with 

unsaturated polyesters [16-18, 20, 21]. Incorporating 

VGCNFs into VEs provides improved mechanical 

properties relative to the neat VE matrix. Nouranian, 

et al. [15-17] and Torres, et al. [18] have developed 

a relatively large mechanical property dataset for 

this material system that are suitable for the ANN 

analysis. This study seeks to use this dataset to 

demonstrate the usefulness of knowledge discovery 

and ANN techniques for nanocomposite material 

property characterization. In this case, ANNs and 

knowledge discovery techniques help model and 

predict the viscoelastic responses (storage and loss 

moduli) and tan delta (ratio of loss to storage 

modulus) of VGCNF/VE nanocomposites, thereby 

aiding the nanocomposite design and 

characterization. 

An ANN model was used to explore the 

VGCNF/VE dataset discussed above [15]. The 

dataset consisted of 240 data points, each 

corresponding to the combinations of the levels 

associated with five input design factors and three 

output responses, i.e., a total of eight “dimensions.” 

The dimensions are the combinations of both inputs 

and outputs of the developed ANN model. For the 

VGCNF/VE dataset, the dimensions are five 

formulation and processing factors, i.e., VGCNF 

type, use or absence of dispersing agent, mixing 

method, VGCNF weight fraction, and temperature, 

and three responses, i.e., storage modulus, loss 

modulus, and tan delta. The last three dimensions 

correspond to measured material properties that 

were also successfully predicted using the ANN 

resubstitution and ANN 3-folds cross validation 

techniques. 

 

2 Materials and Methods 

A brief summary of the statistical experimental 

design utilized by Nouranian, et al. [17] in 

generating the VGFCNF/VE dataset is given here. A 

more detailed discussion on the specific materials 

formulations and specimen preparation steps as well 

as testing procedures can be found in [15-17]. 

 

2.1 Statistical design of experiments 

Five input design factors, i.e., VGCNF type 

(designated as A), use or absence of a dispersing 

agent (B), mixing method (C), VGCNF weight 

fraction (D), and temperature (E) (Table 1) were 

incorporated in a general mixed-level full factorial 

design [22] with storage modulus, loss modulus, and 

tan delta as the viscoelastic responses. The resulting 

22354=240 “treatment combinations” 

(different combinations of the factor levels) were 

randomized before experimentation to eliminate bias 

in preparing the specimens. Dynamic mechanical 

analysis (DMA) was used to measure the 

viscoelastic responses. Each treatment combination 

resulted in three specimens for testing and the 

average value of the three test results was calculated 

for each response [16, 17]. Note that the storage and 

loss modulus are indicative of the nanocomposite’s 

stiffness and energy dissipation capability, 

respectively. The average storage and loss moduli 

for each of the 240 treatment combinations are given 

in [15]. 
 

3 Theory/Calculation 

As mentioned in Section 2, this study incorporates 

five input design factors, i.e. factors A, B, C, D, and 

E and three output responses, i.e., storage modulus, 

loss modulus, and tan delta in the ANN. Therefore, 

the dataset represents an eight-dimensional (8-D) 

case for analysis. Since factors A, B, and C are 

considered qualitative factors, they are represented 

by a numeric code for analysis purposes. For two-

level factors A and B, 0 and 1 are the coded values 
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for the first and second levels, respectively. For the 

three-level factor C, -1, 0, and 1 are the coded values 

for the first, second, and third levels, respectively. 

Factors D and E are considered quantitative, so their 

values can be used directly in the analysis (Table 1). 

However, all the quantitative values were 

normalized using standardized scores. 

ANN resubstitution and ANN 3-folds cross 

validation techniques were used with the 240 

treatment combination dataset to predict and model 

the three output responses of the nanocomposite 

data. This is particularly helpful in the case that the 

inputs of the VGCNF/VE system are known a 

priori, but not the outputs. Thus, using the 

developed ANN model, there is no need to conduct 

the experiments needed to analytically estimate 

these responses.  

Before applying these techniques, a brief 

explanation of the ANN resubstitution and cross 

validation techniques are introduced. 
 

Table 1. The experimental design factors and their levels [15, 17]. 

Factor 

designation 
Factors 

Level 

1 2 3 4 5 

A VGCNF type Pristine Oxidized - - - 

B Use of dispersing agent Yes No - - - 

C Mixing method US
a
 HS

b
 HS/US - - 

D 
VGCNF weight fraction 

(phr
c
) 

0.00 0.25 0.50 0.75 1.00 

E Temperature (
o
C) 30

o
C 60

o
C 90

o
C 120

o
C - 

a
 Ultrasonication 

b
 High-shear mixing 

c
 Parts per hundred parts of resin 

 

3.1 ANN resubstitution method 

In the ANN resubstitution method [23], the whole 

dataset is used to train the ANN and the same 

dataset is used for testing (validation). This ensures 

that the designed ANN model generalizes well for 

the unseen data samples, when a combination of 

inputs is applied to the ANN and the outputs 

(responses) are not explicitly known. This method is 

computationally efficient. Good generalization is 

achieved when the mean squared error (MSE) 

between the actual responses of the ANN model and 

the desired (targeted) responses is minimal [23]. 

The MSE is defined as: 
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where N: is the total number of samples, 

           ti: is the targeted response, and 

          ai: is the actual ANN response 

 

Although several network architectures and training 

algorithms are available, the feedforward neural 

network (FFNN) trained by the back-propagation 

(BP) algorithm is the most commonly used one and 

we have utilized it in this study. A FFNN is a 

layered network of artificially processing units, 

called neurons, in which connections between 

neurons are associated with weights that represent 

the strength of the connections [1]. It includes an 

input layer, with one neuron corresponding to each 

of the inputs used in the model, and an output layer, 

with a single neuron corresponding to each output 

variable (response). The network also includes one 

or more ‘‘hidden” layer(s) of neurons. Because each 

neuron in the hidden layer is associated with an 

activation function (sigmoidal function in this 

study), the hidden layer(s) allow(s) a non-linear 

mapping from the values of the input variables to the 

value of the output variable [1]. 

A FFNN network is trained using a dataset of related 

input-output examples to estimate a non-linear 

relationship between the input variables and the 

output variable(s). Upon presenting the training 

samples to the network, the weighted connections 

between neurons are adjusted by BP to decrease the 

MSE between the network’s output and the targeted 

output. The process is repeated until the MSE has 

been reduced as much as possible [24]. 

 

3.2 Cross validation technique 

Cross validation (CV) is a technique that can be used 

to better train the neural network with the available 

samples in the dataset. First, the available dataset is 

randomly partitioned into a training set and a test 

set. The training samples are further partitioned into 

two disjoint subsets: 1) the estimation subset, which 

is used to select the ANN model and determine the 

interconnection weights, and 2) the validation 
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subset, which is used to test or validate the 

developed ANN model [25]. 

The motivation to use the CV technique is to 

validate the model on a dataset different from the 

one used for parameter estimation. In this way, the 

training samples can be used to assess the 

performance of various candidate ANN models and 

thus the “best” one can be chosen [25]. There are 

four different CV methods and the following is a 

brief explanation of each of these methods [24]. 

 

1) Holdout: If a random number ]1,0[r , then   

(1- r)N samples are allotted to the estimation subset, 

and the remaining rN samples for validation, where 

N is the total number of samples. This method is 

computationally expensive and the final ANN model 

is the one yielding the minimum validation error.  

When the complexity of the target function (input-

output mapping) is small compared to the sample 

size N, the validation performance is relatively 

insensitive to the choice of r, whereas when the 

target function becomes more complex relative to 

the sample size N, the choice of r has a more 

pronounced effect on cross-validation performance. 

However, a single fixed value of r (e.g., 0.2) works 

nearly optimally for a wide range of target-function 

complexity. 

 

2) Early-stopping method of training: With good 

generalization as the goal, the training can be 

stopped earlier before the learning error becomes too 

low. The best point to stop training can be 

determined by the periodic “estimation-followed-by-

validation” process as shown in Figure 1. After some 

periods of training, say five epochs, the ANN 

weights are fixed and the validation error is then 

measured. When the validation phase is completed, 

the training is resumed for another epoch(s). Finally, 

when the validation error starts to increase, it is the 

point to terminate the training process and finalize 

the weights, even if the error for the training samples 

continues to decrease. 

 
3) Multifold: The disadvantage of holdout method is 

that not all samples are used for validation. Instead, 

in multifold validation, the N samples are divided 

into K subsets. Each time, one subset is used for 

validation and the remaining K-1 subsets for 

training. The process is continued until each subset 

is used for validation once. In this study, 3-folds 

cross validation was implemented and the 

performance was assessed by averaging the 

validation error over all the trials. In Figure 2, an 

illustration of a 4-fold cross validation is shown. 

 
Figure 1. Illustration of the early-stopping rule 

based on cross validation. 

 

 
 

Figure 2. Illustration of the multifold method of cross 

validation. For a given trial, the subset of shaded data is 

used to validate the model and the remaining data is used 

to train the model. 
 

4) Leave-one-out: When the available number of 

samples, N, is severely limited, an extreme form of 

multifold validation known as leave-one-out 

validation can be used. In each trial, N-1 samples are 

used for training and the one left out can be used for 

testing. The process is repeated N times until each 

sample is used for validation exactly once. 

 

4 Results and discussion 

Following the standard practice of the ANN 

analysis, the inputs were normalized using 

standardized scores, as their original value ranges 

were completely different from each other. This 

allowed the sigmoid functions to perform better. At 

the same time, the outputs were de-normalized. 

Because back-propagation is a gradient descent 

algorithm that can converge to a local optimum, the 

ANN model was trained six times with different 

initial weights (set randomly), and the best results 

are reported here. 

ICCM19 424



5  

The overall ANN architecture is shown in Figure 3. 

This structure was used when both the resubstitution 

and the 3-folds CV techniques were implemented. 

 
Figure 3. The architecture of ANN used in this study. 

Five neurons were used in the input layer; each for one 

input and three neurons were used in the output layer; 

each for one response. There is one hidden layer with ten 

neurons. 

 

There are three layers utilized in this ANN 

architecture (Figure 3). The input layer consists of 

five neurons and each neuron carries one of the 

inputs used in this study (VGCNF type, use of a 

dispersing agent, mixing method, VGCNF weight 

fraction, and testing temperature). There is one 

hidden layer consisting of ten neurons. The hidden 

layer connects the input layer with the output layer 

via activation functions from input-hidden and from 

hidden-output. The output layer consists of three 

neurons, each for one of the responses used in this 

study (storage modulus, loss moduli, and tan delta). 

First, the ANN was trained using the resubstitution 

method, where all the 240 VGCNF/VE samples 

were used for training and testing. The ANN 

implementation details are illustrated in Table 2. 

 
Table 2. Implementation details of the BPANN applied to 

the VGCNF/VE dataset using the resubstitution method. 

Number of input neurons 5 

Number of output neurons 3 

Number of hidden layers 1 

Number of neurons in the hidden layer 10 

Mean Square Error (MSE) 0.0015 

Learning rate 0.001 

Input-hidden activation function Sigmoidal 

Hidden-output activation function Sigmoidal 

Number of epochs 23 

 

Each input in the VGCNF/VE dataset (VGCNF 

type, use of a dispersing agent, mixing method, 

VGCNF weight fraction and testing temperature) is 

associated with one input neuron in the input layer 

and each response (storage modulus, loss modulus, 

and tan delta) is associated with one output neuron 

in the output layer. Thus, the ANN architecture has 

five input neurons and three output neurons. The 

performance curve of the ANN implementation 

using the resubstitution method is shown in Figure 4. 

 

 
Figure 4. The performance curve of back-propagation 

ANN (BPANN) using the resubstitution method. The 

MSE gradually decreases with the increasing number of 

epochs and the best performance (lowest MSE) is 

achieved after running 23 epochs. 
 

After the resubstitution method, the 3-folds CV 

technique was applied on the VGCNF/VE dataset. 

Since the total number of samples was 240 and three 

different trials were implemented, the size of the 

training and test sets in each trial were 160 and 80 

samples, respectively. Each trial had different 

training and test samples than those of the other 

trials. This led to a more efficient training and 

testing of the ANN model and, therefore, the best 

performance and network structure was obtained. 

Similar to the ANN implementation using the 

resubstitution method, in 3-folds cross validation 

implementation, five neurons were used in the input 

layer (each VGCNF/VE input with one neuron) and 

three neurons in the output layer (each VGCNF/VE 

response with one neuron). The learning rate was 

0.001 and the activation function implemented 

between the input-hidden and hidden-output layer 

was the sigmoidal function. There was one hidden 

layer with ten neurons. 

The performance curve of the ANN implementation 

using the first fold of the 3-folds cross validation 

technique is shown in Figure 5. 
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Figure 5. The performance curve using the data samples 

of the first fold when 3-folds cross validation technique 

was applied. The performance of the training set is 

slightly better than that of the test set and the best 

performance was achieved at epoch 8 when the MSE 

reached about 0.0028 mark. 

 

As evident in Figure 5, the performance of both test 

(validation) and training sets were very close, even 

though the training set behaved better up to epoch 

10. After that, the MSE of the training set began to 

increase and was equal to the MSE of the test set at 

epochs 12-14. The best performance of the ANN 

model using the first fold was achieved at epoch 8, 

when the MSE was minimal at about 0.0028. 

The performance curve of the ANN implementation 

using the second fold of the 3-folds cross validation 

technique is shown in Figure 6. 

The performance curves were almost steady for both 

training and test sets (Figure 6). However, the 

training set behaved better than the test set compared 

to the training and test sets in the first fold. The best 

performance of the ANN model using the second 

fold was achieved at epoch 17, when the MSE was 

minimal at about 0.0029. After that, the MSE tended 

to slightly increase and remained constant up to 

epoch 23. 

The performance curve of the ANN implementation 

using the third fold of the 3-folds cross validation 

technique is shown in Figure 7. In this figure, the 

total number of epochs needed for the ANN model 

to converge was 25 epochs and the MSE was 

minimal at epoch 21. The performance of both the 

training and test sets was nearly the same at the 

beginning, but later it was slightly better for the 

training set than for the test set. However, both 

curves remained almost steady after running seven 

epochs of the analysis. 

 
Figure 6. The performance curve using the data samples 

of the second fold when 3-folds cross validation technique 

was applied. The performance of the training set is 

slightly better than that of the test set and the best 

performance was achieved at epoch 17 when the MSE 

reached about 0.0029 mark. 

 

 
Fig. 7. The performance curve using the data samples of 

the third fold when 3-folds cross validation technique was 

applied. The performance of the training set is slightly 

better than that of the test set and the best performance 

was achieved at epoch 21 when the MSE reached about 

0.0030 mark. 
 

The number of epochs needed for the ANN model to 

converge was higher in the case where the 

resubstitution method was implemented. This is due 

to the fact that the number of training and test 

samples was higher than those of the 3-folds cross 

validation technique. However, this came at the 

expense of a lower MSE at 0.0015 using the 

resubstitution method, whereas the average MSE of 

all folds in the case where the 3-folds cross 
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validation technique was implemented was higher at 

about 0.0029. 

 

5 Application to Materials Informatics 

The results and analyses shown in section 4 validate 

that all of the five input design factors and the three 

responses form a good combination to design a 

VGCNF/VE material system. This observation can 

be proved by the small value of MSE obtained 

through the analysis as well as the relatively few 

number of epochs (an average of 17.25 epochs) 

required in order for the ANN to converge (i.e. to 

achieve the minimal MSE). However, when tan delta 

response was excluded from the analysis, the MSE 

started to increase (about 0.02). In addition, when 

the testing temperature was removed as an input 

design factor, the MSE started to significantly 

increase (about 0.24). At the same time, the number 

of epochs required for the ANN to converge was 

much higher (about 1000 epochs). On the other 

hand, when the VGCNF weight fraction was 

excluded as a design factor, the average MSE 

increased, but not as much as when the testing 

temperature was excluded. 

These observations confirm that the testing 

temperature is the most dominant feature in the input 

design factors followed by VGCNF weight fraction. 

Tan delta is also very important as a response. 

However, all other input design factors had 

exhibited less sensitivity, as their impacts on the 

responses were much less than the testing 

temperature and the VGCNF weight fraction. The 

findings in this study confirm previous findings by 

Nouranian, et al. [17], where a response surface 

modeling approach was utilized to optimize the 

VGCNF/VE nanocomposite material system. 

 

6 Summary and Conclusions 

Artificial Neural Network (ANN) technique was 

applied to a vapor-grown carbon nanofiber 

(VGCNF)/vinyl ester (VE) nanocomposite dataset as 

a proof of concept for materials informatics. This 

dataset had previously been generated by a full 

factorial experimental design with 240 different 

design points. Each treatment combination in the 

design consisted of eight feature dimensions 

corresponding to the design factors, i.e., VGCNF 

type, use of a dispersing agent, mixing method, 

VGCNF weight fraction, and testing temperature as 

the inputs and storage modulus, loss modulus, and 

tan delta as the outputs. The ANN was trained using 

the resubstitution method and the 3-folds cross 

validation (CV) technique to provide a predictive 

model for these responses when the inputs are fed to 

the ANN. The ANN was able to predict/model these 

responses with minimal mean square error (MSE) 

using both techniques. However, the MSE error was 

relatively lower in case of resubstitution method. 

This is due to the fact that more samples were used 

for training and testing when the resubstitution 

method was implemented. In the 3-folds CV 

technique, the dataset was split into two subsets: one 

for training and one for testing (validation), so the 

number of samples used for training and testing was 

lower. This came at the expense of more converging 

time (23 epochs) needed for the ANN when the 

resubstitution method was implemented. 

The ANN applied here demonstrates the usefulness 

of data mining and knowledge discovery techniques 

in materials science and engineering. Specifically, 

the analysis of the dataset associated with a 

VGCNF/VE nanocomposite material system serves 

as proof of concept. It is expected that more 

knowledge discovery and data mining techniques 

will be employed within the rising field of materials 

informatics in near future. 
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