HYBRID INORGANIC/ORGANIC NANOCOMPOSITES CONSISTING OF CUINS₂-ZNS CORE-SHELL QUANTUM DOTS EMBEDDED IN A POLY(METHYLMETHACRYLATE) MATRIX

Gyu Wan Han¹, Jung Min Son², Dong Yeol Yun³, Tae Whan Kim^{1,2,3,*}, Sung Woo Kim⁴, and Sang Wook Kim⁴

¹Department of Information Display Engineering, Hanyang University, Seoul, Korea ²Department of Electronics and Computer Engineering, Hanyang University, Seoul, Korea ³Division of Nanoscale Semiconductor Engineering, Hanyang University, Seoul, Korea ⁴ Department of Molecular Science & Technology, Ajou University, Suwon, Korea * Corresponding author (twk@hanyang.ac.kr)

Keywords: CuInS₂-ZnS core-shell quantum dot, PMMA, nanocomposites

Abstract

CuInS₂ (CIS) - ZnS core-shell quantum dots (QDs) were formed by a using sol-gel method, and nanocomposites consisting of CIS-ZnS core-shell QDs embedded in the poly(methymethacrylate) (PMMA) matrix were formed by a using spin-coating method. A absorption peak at 550 nm for the absorbance spectra corresponded to the optical excitation edge of the CIS-ZnS core-shell QDs. A peak at 700 nm for the PL spectrum was related to the recombination luminescence of the CIS-ZnS core-shell QDs. Capacitance-voltage curves for Al/CIS-ZnS QDs embedded in PMMA/p-Si device showed a hysteresis behavior with a flat band voltage shift.

1. Introduction

Hybrid inorganic/organic nanocomposites have been currently receiving considerable attention because of their promising applications in flexible electronic devices operating at lower powers [1-7]. The prospect of potential applications in electronic devices has led to substantial research and development efforts to form various nanocomposites containing inorganic nanocomposites, acting as charge storage regions [8-12]. Nanocomposites containing core-shell quantum dots (QDs) have emerged as excellent candidates for promising applications in electronic devices. Among the several types of QDs, CuInS₂(CIS)-ZnS ternary core-shell QDs have been particularly interesting

due to their being environment-friendly materials in comparison with core-shell QDs containing Cd and Pb atoms and to their promising applications in nextgeneration electronic devices. Even though some studies concerning the formation and the materials characteristics of binary core-binary QDs/polymer nanocomposites have been conducted [13-16], very few works on the formation and the applications of the ternary core-binary shell QDs/polymer nanocomposites have been performed. This paper reports data for formation processes and feasibility results of the hybrid nanocomposites consisting of CIS-ZnS core-shell QDs embedded in the poly(methymethacrylate) (PMMA) matrix for possible applications in nonvolatile memory devices. Absorbance and photoluminescence measurements were carried out to investigate the optical properties of CIS-ZnS core-shell QDs. Capacitance-voltage (C-V) measurements were performed to investigate the possibility for applications of nanocomposites consisting of coreshell CIS-ZnS QDs embedded in a PMMA matrix in nonvolatile memory devices.

2. Experimental Details

Inorganic/organic nanocomposites consisting of the colloidal CIS-ZnS QDs and the PMMA polymer layer used in this study were prepared on p-Si (100) substrates. The formation process of the CIS-ZnS QDs solution was started by using a CIS core solution [17]. The solution consisting of 8 ml of

octadecene (ODE), 0.1 mMol of indium acetate, and 0.3 mMol of miristic acid were mixed in a 25-ml three-neck flask. Then, the mixed solution was degassed at 110°C for 2 h and was injected with a Cu-thiol stock solution at 250°C. The schematic diagrams of the formation processes of the CIS-ZnS core-shell QDs are shown in Fig. 1. Subsequently, the solution was heated at 200-210°C for 2 h. 0.3 mMol of copper iodide, was mixed with 3 ml of dodecanethiol, for the synthesis of the Cu-thiol stock solution. Then, the mixed solution was slightly heated on a hot-plate while being stirred. After the synthesis of the CIS core solution was finished, the synthesized solution was in-situ cooled to form the ZnS shell at room temperature. Zn acetate, 0.5 mMol, was added to the CIS core solution, and the solution was heated to 230°C. Then, the solution was aged for 1.5 h at 230°C. To fabricate the CIS-ZnS coreshell QDs blended with a PMMA layer, The 150 mg PMMA polymer insulator was dissolved in chlorobenzene (4.85 g) solvent for a 3 wt% PMMA solution. Then, CIS-ZnS core-shell QDs (5.5 mg) blended into **PMMA** solution. Subsequently, ultrasonication was performed for over 1 h to obtain uniform solutions. The blended solutions treated by using ultrasonic were spin-coated on p-Si substrates. The schematic diagrams of the formation processes of the nanocomposites of the CIS-ZnS core-shell QDs embedded in a PMMA are shown in Fig. 2.

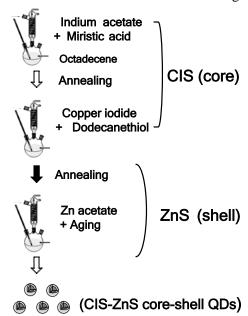


Fig. 1. A schematic of the formation processes of the CIS-ZnS core-shell QDs.

The schematic diagrams of (a) the CIS-ZnS core-cell nanoparticles and (b) nanocomposites of CIS-ZnS core-shell QDs embedded in PMMA matrix and the chemical structure of the PMMA layer are shown in Fig. 3 [18].

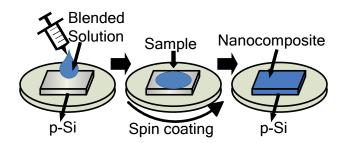


Fig. 2. A schematic of the formation processes of nanocomposites consisting of the CIS-ZnS coreshell QDs.

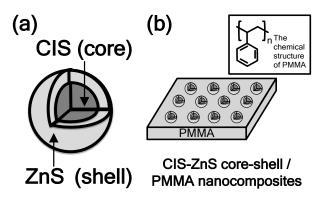


Fig. 3. (a) Schematic diagrams of the CIS-ZnS QDs and (b) nanocomposites consisting of CIS-ZnS QDs embedded in a PMMA matrix and the chemical structure of PMMA.

The optical absorption measurements were performed by using an ultraviolet-visible (Scinco PDA S-3100). The PL spectrometer measurements were carried out using a 75 cm monochromator equipped with phtomultiplier tube (Ocean Optics usb-400). The excitation source was the 355 nm line of a CWUV laser. C-V measurements were performed by using an HP 4284 precision LCR meter at room temperature.

3 Results and Discussion

Figure 4 shows optical absorbance and PL spectra of CIS-ZnS core-cell QDs. The broad absorption peak

at 550 nm for the absorbance spectrum corresponds to the optical excitation edge of the CIS-ZnS coreshell QDs [17, 19]. The dominant peak at 700 nm for the PL spectrum is related to the recombination luminescence due to the interband transitions of the CIS-ZnS core-shell QDs [17, 19]. The Stöck shift corresponding to the difference of the peak position between the absorbance and the PL spectra might be attributed to the quantum confinement effect of the CIS-ZnS core-shell QDs, but that is not yet clear.

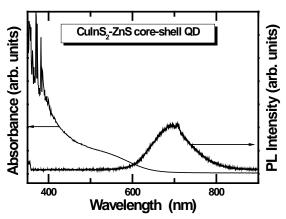


Fig. 4. Optical absorbance and photoluminescence spectra of CIS-ZnS core-shell QDs.

Al top and bottom electrodes with a thickness of 180 nm were thermally deposited in order to investigate the memory effects of the devices through a metal mask at a system pressure of 1×10⁻⁶ Torr. Figure 5 shows the C-V curves measured at 1-MHz for the Al/core-shell CIS-ZnS QDs embedded in PMMA layer/p-Si device at room temperature. The C-V behavior of the devices based on the CIS-ZnS QDs embedded in a PMMA layer is similar to those of metal-insulator-semiconductor diodes with floating gates containing nanoparticles [20]. The C-V curves for the Al/core-shell CIS-ZnS QDs embedded in PMMA layer/p-Si device, obtained by sweeping the applied voltage between the inversion and the accumulation regions at room temperature, clearly show counterclockwise hysteresis behavior. The appearance of the C-V hysteresis indicates the existence of charge sites occupied by electrons injected from the inversion layer in the p-Si substrate. However, the Al/PMMA/p-Si device without the core-shell CIS-ZnS QDs shows no hysteresis under same measurement conditions, indicative of the charge storage in the core-shell

CIS-ZnS QDs embedded in a PMMA layer. The memory effect of the counterclockwise hysteresis is attributed to electrons tunneled from the p-Si substrate through PMMA matrix layer and trapped in the core-shell CuInS₂-ZnS QDs [21].

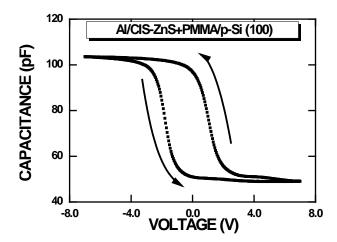


Fig. 5. C-V curves at 9 V with 1-MHz for the CIS-ZnS QDs blended in PMMA/p-Si device.

4. Summary and Conclusions

CIS-ZnS core-shell QDs were formed by using a sol-gel method, and the hybrid nanocomposites consisting of CIS-ZnS core-shell QDs embedded in the PMMA matrix were formed on p-Si (100) substrates by using a spin-coating method. The broad absorption at 550 nm for the absorbance spectrum corresponded to the optical excitation edge of the CIS-ZnS core-shell QDs. The dominant peak at 700 nm for the PL spectrum was related to the recombination luminescence due to the interband transitions of the CIS-ZnS core-shell QDs. C-V characteristics of the devices fabricated utilizing CIS-ZnS core-cell ODs embedded in a PMMA matrix showed that the hysteresis behavior of the C-V curves was attributed to the carriers captured in the CIS-ZnS QDs. The nanocomposites based on the CIS-ZnS QDs in the PMMA matrix offer possible applications in nonvolatile memory devices.

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2010-0018877).

References

- [1] H. Y. Jeong, J. Y. Kim, J. W. Kim, J. O. Hwang, J. E. Kim, J. Y. Lee, T. H. Yoon, B. J. Cho, S. O. Kim, R. S. Ruoff and S. Y. Choi "Graphene oxide thin films for flexible nonvolatile memory applications". *Nano Lett.*, Vol. 10, No. 11, pp 4381-4386, 2010.
- [2] K. Asadi, M. Li, N. Lin, P. W. M. Blom and D. M. de Leeuw "Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage". *Appl. Phys. Lett.*, Vol. 97, No. 19, pp 193308-1 - 193308-3, 2010.
- [3] T. Kimura and M. Hara "Nonvolatile multiple-valued memory device using lateral spin valve". *Appl. Phys. Lett.*, Vol. 97, No. 18, pp 182501-1 182501-3, 2010.
- [4] S. William, M. F. Mabrook and D. M. Taylor "Floating-gate memory based on an organic metalinsulator-semiconductor capacitor". *Appl. Phys. Lett.*, Vol. 95, No. 09, pp 093309-1 -093309-3, 2009.
- [5] F. Lindner, K. Walzer and K. Leo "Organic heterostructure device with nonvolatile memory behavior using electrically doped layers". *Appl. Phys. Lett.*, Vol. 93, No. 23, pp 233305-1 233305-3, 2008.
- [6] W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen and A. Dodabalapur "Charging phenomena in pentacene-gold nanoparticle memory device". *Appl. Phys. Lett.*, Vol. 90, No. 4, pp 042906-1 - 042906-3, 2007.
- [7] A. Kanwal and M. Chhowalla "Stable, three layered organic memory devices from C₆₀ molecules and insulating polymers". *Appl. Phys. Lett.*, Vol. 89, No. 20, pp 203103-1 - 203103-3, 2006.
- [8] A. Tang, F. Teng, Y. Hou, Y. Yang, F. Tan, S. Qu and Z. Wang "Optical properties and electrical bistability of CdS nanoparticles synthesized in dodecanethiol". *Appl. Phys. Lett.*, Vol. 96, No. 16, pp 163112-1 163112-3, 2010.
- [9] F. Li, D. I. Son, J. H. Ham, G. J. Kim, J. H. Jung and T. W. Kim "Memory effect of nonvolatile bistable devices based on CdSe/ZnS nanoparticles sandwiched between C₆₀ layers". *Appl. Phys. Lett.*, Vol. 91, No. 16, pp 162109-1 - 162109-3, 2007.
- [10] K. Mohanta, S. Majee, S. Batabyal and A. Pal "Electrical bistability in electrostatic assemblies of CdSe nanoparticles". *J. Am. Chem. Soc.*, Vol. 110, No. 37, pp 18231-18235, 2006.
- [11] J. H. Kim, J. Y. Jin, J. H. Jung, I. Lee, T. W. Kim, S. K. Lim, C. S. Yoon and Y. H. Kim "Formation and electrical properties of Ni_{1-x}Fe_x nanocrystals embedded in a polyimide layers for applications as nonvolatile flash memories". *Appl. Phys. Lett.*, Vol. 86, No. 3, pp 032904-1 032904-3, 2005.

- [12] N. J. Craig, J. M. Taylor, E. A. Lester, C. M. Marcus, M. P. Hanson and A. C. Gossard "Tunable nonlocal spin control in a coupled-quantum dot system". *Science*, Vol. 304, No. 23, pp 565-567, 2004.
- [13]F. Li, D. I. Son, T. W. Kim, E. Ryu and S. W. Kim "Carrier transport mechanisms of bistable memory devices fabricated utilizing core-shell CdSe/ZnSe quantum-dot/multi-walled carbon nanotube hybrid nanocomposites". *Nanotechnology*, Vol. 20, No. 8, pp 085202-1- 085202-5, 2009.
- [14] V. S. Reddy, S. Karak and A. Dhara "Multilevel conductance switching in organic memory devices based on Alq₃ and Al/Al₂O₃ core-shell nanoparticles". *Appl. Phys. Lett.*, Vol. 94, No. 17, pp 173304-1 173304-3, 2009.
- [15] H. Liu, W. Winkenwerder, Y. Liu, D. Ferrer, D. Shahrjerdi, S. K. Stanley, J. G. Ekerdt and S. K. Banerjee "Core-shell germanium-silicon nanocrystal floating gate for nonvolatile memory application". *IEEE Trans. Electron Devices*, Vol. 55, No. 12, pp 3610-3614, 2008.
- [16] F. Li, D. I. Son, S. M. Seo, H. M. Cha, H. J. Kim, B. J. Kim, J. H. Jung and T. W. Kim "Organic bistable devices based on core/shell CdSe/ZnS nanoparticles embedded in a conducting poly(N-vinylcarbazole) polymer layer". *Appl. Phys. Lett.*, Vol. 91, No. 12, pp 122111-1 122111-3, 2007.
- [17] J. H. Park and S. W. Kim "CuInS₂/ZnS core/shell quantum dots by cation exchange and their blue-shifted photoluminescence" *J. Mater. Chem.*, Vol. 21, pp 3745-3750, 2011.
- [18] D. I. Son, D. H. Park, S. Y. Ie, W. K. Choi, J. W. Choi, F. Li and T. W. Kim "Single active-layer structured dual-function devices using hybrid polymer–quantum dots" *Nanotechnology*, Vol. 19, No. 39, pp 395201-1 395201-7, 2008.
- [19] R. Xie, M. Rutherford, and X. Peng "Formation of high-quality I-III-VI semiconductor nanocrystals by tuning relative reactivity of cationic precursors", *J. Am. Chem. Soc.*, Vol. 131, No. 16, pp. 5691-5697, 2009.
- [20] M. Kanoun, A. Souifi, T. Baron and F. Mazen "Electrical study of Ge-nanocrystal-based metaloxide-semiconductor structures for p-type nonvolatile memory applications". *Appl. Phys. Lett.*, Vol. 84, No. 25, pp 5079-5081, 2004.
- [21] S. Nakata, K. Saito and M. Shimada "Non-volatile Al₂O₃ memory using nanoscale Al-rich Al₂O₃ thin film as a charge storage layer". *Jpn. J. Appl. Phys.*, Vol. 45, No. 4B, pp 3176-3178, 2006.