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1. Introduction  

In engineering design, geometry and material can be 

separately specified at the traditional macroscale. 

However, at the micro- and meso-scales, material 

compositions become important in functional 
realization, such as in composites and functionally 

graded materials.  A novel CAD system is under 

development that supports multiscale geometry and 
materials modeling which enables concurrent 

product-material design.  We proposed a new 

multiscale geometric and materials modeling method 

that uses an implicit representation based on 

wavelets and their extension to efficiently capture 

internal and boundary information. This new 

approach enables integration of structure-property 

relationships for materials design. We call our 

modeling approach dual representation or dual-Rep 

[1]. In this paper, the surfacelet transform is defined, 
which consists of the Radon and wavelet transforms, 

in order to develop structure-property relationships. 

We demonstrate the methods with an example 

polymer nanocomposite material and illustrate 

structure-property model integration.  

2. Geometric Modeling 

Our objective is to develop a geometric model that 
can represent both part macroscale geometry and 

material microstructure; i.e., a multiscale geometry 

for computer-aided design of composite materials.  
Wavelets are the most common representation for 

multi-resolution modeling in the domain of 2D 

shape representation. Similar to Fourier analysis, 

wavelet analysis represents and approximates signals 

(or functions). The functional space for wavelet 

analysis is decomposed based on a scaling function 

j(t) and a wavelet function y(t) with one-dimensional 
variable t for multi-resolution analysis [2]: 
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where a is a scaling (dilation) factor and b is a 
translation factor. In the geometric modeling 

domain, the wavelet transforms were used to 

describe planar curves with multiple resolutions. 

Part and material microstructure boundaries can be 

viewed as surface singularities that are discon-

tinuous in one direction while continuous in the 

other two directions in 3D space. Therefore, we 

propose new surfacelet basis functions for multiscale 

modeling [3].  Particularly, a 3D ridgelet (type of 
surfacelet) that represents plane singularities is 

defined as [4] 
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where  is the location in the domain  

in the Euclidean space,  is a wavelet 

function,  is a surface function so that 

 implicitly defines a surface, with 

factor b and the shape parameter vector p ∈ R
m 

determining the location and shape of surface 

singularities, respectively, and  and  

b ∈ [-p/2, p/2] are angular parameters corresponding 

to rotations.  

We propose the dual-Rep model that uses both 
wavelet and surfacelet basis functions in order to 

model external part shapes as well as internal 

microstructural geometry boundaries. The approach 
to generating dual-Rep models of microstructure is 

to recognize microstructure features from stacks of 

2D micro-scale images. The Radon transform is an 
effective method for representing line singularities 

in images [3].  The Radon transform was developed 

to reconstruct images from CT scans [5], which 

consist of sets of parallel scans where the source and 

sensor rotate around the target.  We use this 

transform to fit surfacelet models to microstructures. 
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Then, by applying a wavelet transform to the results 

of the Radon transform, an image representation is 
produced that is potentially sparse and enables many 

image processing techniques to be applied.   

Mathematically, the Radon transform in a domain Ω 
is the integral along the plane (represented as the 

dash line in 2D), which is perpendicular to a line at 

angle α, as illustrated in Fig. 5. The plane and the 

line intersect at a point which has the radial distance 

µ from the origin. Varying µ results in a vector of 

integral values, Iα(µ) in 2D and Iα,β(µ) in 3D: 

( ) ( ) ( )= + −∫∫ , cos sinI f x y x y dxdy
α
µ δ α α µ      (3) 

where δ is the Dirac delta function. The simplest 

surfacelet is the ridgelet transform 
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In general, our generic surfacelet transform is the 1D 
wavelet transform of the surface integrals.  

 
Fig. 1. Geometric interpretations of parameters in 

surfacelet transform. 

3. Polymer �anocomposite 

We are interested in a nanocomposite system 

consisting of calcium-phosphorus (CaP) nanofibers 

in a polyhydroxybutyrate (PHB) matrix, (CaP/PHB). 

Figure 2 is the scanning electron microscopy image 

of CaP/PHB which was characterized for dispersion 

and distribution, thermal properties, and 
thermomechanical properties [6]. We use two 

methods to develop structure-property relationships. 

The multiscale microstructure model of CaP/PHB 
was represented using the surfacelet transform. We 

use the surfacelet model to recognize microstructural 

features, such as fibers, so that effective mechanical 

properties can be computed. By using the surfacelet 

transform, we can develop structure-property-

geometry relationships. 

 

Fig 2. SEM images of nanofiber micro-structure (nano-

fibers shown at tips of arrows). 

The strain-stress relationship for a fiber in a polymer 

matrix microstructure can be derived readily from 

basic composite materials models for a single fiber 

in a polymer matrix [7]: 
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where the Sij are four independent constants in the 

elastic compliance tensor of a unidirectional 

laminate in its local frame (Em = elastic modulus of 
matrix, Efi = elastic modulus of fiber in direction i, G 

= shear moduli, ν = Poisson’s ratio, Vr = volume 
fraction of fiber): 
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The local compliance tensors can be transformed to 

global coordinates using the fourth-rank coordinate 

transformation law 

Sabcd = QapQbqQcrQdsS
l
pqrs  (7) 

where each Qij is a standard rotation matrix. 

4. Simple Fiber-Reinforced Composite Example 

The surfacelet representation and its hierarchical 

modeling capabilities are illustrated with a simple 

example of a fiber-reinforced composite material.  

Fig. 3 shows the sample microstructure, with vertical 

and horizontal fibers spaced 100 µm apart.  We 

assume a typical carbon-epoxy composite material 

with property values of Em = 2.94 GPa, Ef1 = 234.6 

GPa, Ef2 = 13.8 GPa.  The sample’s elastic modulus 
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analytical model, surfacelet representation, 4X 

zoomed-out representation, and 4X zoomed-out 
elastic modulus model will be derived in this 

section. 

 
   4.1 Surfacelet Representation 

The Radon transform of the microstructure is shown 

in Fig. 4a, which illustrates the power of the 
transform for microstructures with linear elements.  

The four fibers from Fig. 3 are identified by the four 

bright spots in the Radon transform at (α,µ) = 

(0,50), (0,150), (90,50), and (90,150). The α values 

correspond to the angles of 0 and 90 degrees, while 

the µ values correspond to the positions of the fibers.  

Using the Radon transform, it is possible to convert 

line singularities (the fibers) into point singularities 
(the 4 bright points), effectively recognizing the 

presence of the fibers in the image.  Applying the 

biorthogonal spline wavelet (bior1.3 in the Wavelet 

Toolbox) to the Radon transform yields the 

surfacelet representation shown in Fig. 4b. 

To generate a larger-scale representation of this 

microstructure, wavelet decomposition operations 

are performed.  The results after 4 such 

decomposition steps are shown in Fig. 4c.  Note that 

the number of surfacelet coefficients has decreased 
by a factor of 16, a much lower resolution.  

Computing inverse wavelet and Radon transforms 

results in a reconstructed microstructure image, as 

seen in Fig. 4d.  Note that the fibers are still visible 

in this image, indicating that the lower resolution did 

not disrupt the fiber representation. 

Applying the mechanical property model in Eqns. 5-

7, the effective elastic modulus is 5.85 GPa, which is 

close to a rule-of-mixtures approximation of 5.26 

GPa, determined by interpreting the gray-scale 

values in Fig. 4d as material compositions.  
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b) surfacelet representation  
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wavelet decomposition (compare with (a)) 
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d) reconstructed image 

Figure 4. Fiber-reinforced composite 

5. Calcium-Phosphate Fiber Example 

Nano-scale fibers represent one method for 
strengthening biopolymers for some applications.  

We will study CaP-PHB nanocomposite introduced 

in Section 3 with 5 weight-percent of CaP fibers.  

First, to demonstrate the ability to model 

microstructure, we will use a synthetic 

microstructure.  Then, the surfacelet method will be 

applied to a micrograph of the actual material. 
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Fig. 3, Fiber-reinforced composite 

microstructure (dimensions in µm). 



   5.1 Three-CaP PHB fiber example 

The properties of PHB are: Em = 2 GPa, Gm = 1.2 

GPa, ν = 0.4, density = 1.233 g/cm
3
.  The 

synthesized CaP nanofibers were on average 22 nm 
in diameter and 600 nm in length.  Their mechanical 

properties were: Ef1 = 110 GPa, Ef2 = Gf12 = 10 GPa, 

ν = 0.3, and density = 2.22 g/cm3. 

Assuming that fibers are randomly distributed, a 

sample microstructure is shown in Figure 5a.  

Applying the model from Eqns. 5-7 and taking into 

account fiber orientations, the resultant elastic 

constant matrix is 

3.93 0.793 0

1 9 0.793 3.26 0

0 0 1.59

e

 
 =  
  

E  

The rule-of-mixtures gives an effective elastic 

modulus of 3.45 GPa, which is known to overpredict 

moduli computed using more realistic models, while 

the inverse rule-of-mixtures provides a lower bound 

of 1.14 GPa, so our estimate is reasonable. 

 
a) original image 

 
 

b) radon transform 

 
 

c) wavelet decomposition level 2 

 
 

d) wavelet decomposition level 3 

  
e) wavelet decomposition level 4 

 
 

f) wavelet decomposition level 5 

 
 

g) wavelet decomposition level 6 

  

h) wavelet decomposition level 7 

Figure 5,  Three-CaP fiber image 

 

Surfacelets were fit to Fig. 5a and wavelet 

decomposition was performed, enabling 7 levels of 

wavelet decomposition.  The Radon transform is 

shown in Fig. 5b, along with the inverse surfacelet 

transform (inverse wavelet and inverse Radon 

transforms).  Fibers can be recognized at the bright 
convergence points, which show that the fibers are at 

Radon transform angles of 92, 171, and 68 degrees.  

As shown in Fig. 5a, these angles are perpendicular 
to the actual fiber angles, which were at 2, 81, and 

158 degrees, respectively.  Again, the Radon 
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transform is effective in recognizing the presence of 

fibers in a microstructure image. 
Figs. 5c-h show results of inverse wavelet and 

surfacelet transforms after 2-7 levels of wavelet 

decomposition.  At 5-7 decomposition levels, too 
much resolution has been lost to adequately 

understand the Radon transform (inverse wavelet) or 

reconstruct fibers. 

A total of 5 images were analyzed to better 

understand the effects of wavelet decomposition 

levels on microstructure images.  The Radon 

transform (or inverse wavelet transform) results in a 

matrix of (α,µ) coefficients.  The bright convergence 

points can be recognized by computing the standard 

deviation of coefficient values in each column and 

finding local maxima among them.  Each column 

represents transform values at a single angle α for 

the range of positions µ.  At the bright points, the 

coefficient values are very large, leading to large 

standard deviation values for those columns.   
Table 1 shows the results for finding fibers in Radon 

transform images for the 5 randomly generated 

images, including the one in Fig. 5a (Image 3).  The 
table entries indicate the average error between the 

actual fiber angle and the closest maximum in the 

standard deviation range.  For example, entries of 0 

indicate that all standard deviation maxima occurred 

exactly at the known fiber angles.  Entries of 0.33 

indicate that one out of three maxima was one 
degree away from the actual fiber angle.  Results 

show that this analysis of Radon transform 

coefficient matrices can be used successfully to 
recognize fiber orientations at wavelet 

decomposition levels up to 4.  At decomposition 

levels of 5 and above, the errors grow too large to 
reliably find fibers. 

Table 1.  Errors in finding fiber orientations. 

Decomposition Level of Wavelet 

Transform 

I

m

a

g

e 

R

a

d

o

n 

2 3 4 5 6 7 

1 0 0 0.33 0.67 3.00 12.33 8.33 

2 0 0 0.33 0.67 2.00 3.33 7.67 

3 0 0 0.33 1.00 3.67 10.33 14.00 

4 0 0 0.33 0.67 3.00 12.33 8.33 

5 0 0 0.67 1.00 2.33 8.00 21.67 

   5.2 Physical CaP-PHB example 

The SEM micrograph of Fig. 2, of the 5 wt % CaP-
PHB nanocomposite, is shown in Fig. 6 with 6 major 

fibers or fiber clusters circled.  We hypothesized that 

the surfacelet transform would be able to model the 
fibers in a manner similar to that demonstrated in the 

synthetic images.  The Radon and inverse surfacelet 

transforms are shown in Figure 7a-b.  The inverse 

wavelet transform after 4 levels of wavelet 

decompression is shown in Fig. 7c, while the 

reconstructed image (inverse Radon transform of c) 

is shown in Fig. 7d.   

Similarly to the synthetic microstructures presented 

earlier, it is possible to identify fibers as bright 
points in Fig. 7a and 7c.  The angles found in Figs. 

7a, c are 180, 46, 91, 123, and 138 degrees.  Note 

again that these are 90 degrees from the actual fiber 

orientation due to the Radon transform definition.  

Each falls into the range of fiber angles estimated 

from Fig. 6.  Table 2 shows the fiber angles found 

using the standard deviation maxima rule explained 
earlier.  In the Radon transform and the inverse 

wavelet transforms from up to 4 levels of wavelet 

decomposition, it is possible to identify successfully 
the fiber angles.  As a consequence, we can conclude 

that our hypothesis that the surfacelet transform 

would be able to model fibers in physical 
microstructures is validated. 

6. Conclusion 

A new hierarchical heterogeneous modeling method 

was described to model both the geometry and 

material information of parts. The model represents 

internal material distributions, microstructure 

boundaries, and part boundaries with a unified 

implicit form. Surfacelets as new basis functions 

were proposed to capture boundary information for 
both the part and the material microstructure (e.g., 

grain boundaries).  A hierarchical modeling method 

of computing low resolution microstructures was 
tested that utilizes wavelet decomposition.  The 

surfacelet model and method were demonstrated on 

several examples, a simple continuous-fiber-

reinforced composite and several synthetic and 

natural nanofiber reinforced polymer material. 

Modeling results indicated that material composition 

and microstructure, and their corresponding 

mechanical properties, could be integrated readily.  

A homogenization method was applied successfully 
to compute effective elastic properties from the 



hierarchical model.  The application of the wavelet 

decomposition method for computing low resolution 
models yielded good results.  Fibers could be 

recognized in both the synthetic and natural 

microstructure images up to 4 levels of wavelet 
decomposition.  At higher levels of decomposition, 

corresponding to lower resolutions, a rule-of-

mixtures method could be used to compute effective 

mechanical properties 

1 µµµµm1 µµµµm
 

Figure 6.  Micrograph of CaP-PHM composite with 5 wt 

% CaP fibers. 
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Figure 7.  Surfacelet transform of CaP-PHB 

nanocomposite microstructure. 

 

Table 2. Fiber angles in actual CaP-PHB microstructure 
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