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SUMMARY 
The scaled boundary finite element method in an extension for piezoelectric materials is 
used to analyze the orders of stress singularities for various two- and three-dimensional 
situations, proving the method to be an efficient tool for the determination of stress 
singularity orders for composites of linear-elastic and piezoelectric material.     
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INTRODUCTION 
In the case of piezoelectric multi-material composites with geometrical and/or material 
discontinuities, singularities occur in the stress fields as well as in the electric fields. 
The criticality of the stress singularities in such situations can be assessed by the use of 
two essential characteristics of a stress singularity, namely the singularity exponent and 
the corresponding generalized stress intensity factor. While the orders of stress 
singularities are known for many elastostatic situations, further research is needed for 
piezoelectric multi-material systems. Analytical solutions rarely exist, and common 
numerical methods such as the finite element method can only be applied with 
considerable numerical effort. In this contribution, the scaled boundary finite element 
method in an extension for piezoelectric materials is used to analyze the orders of stress 
singularities for various two- and three-dimensional situations.    

 

STRESS SINGULARITIES 

Stress singularities occur in situations with material and/or geometric discontinuities 
within the scope of linear elasticity theory, for example at cracks and notches or 
material interfaces at a free edge. While stress singularities are of theoretical nature, at 
the same time they are a good indicator of weak locations in structures and can be used 
to assess the criticality of a given situation to avoid failure. 

When stress singularities occur, using a spherical coordinate system r, φ1, φ2 the 
asymptotic local displacement and stress fields can be represented in the following form 
(where the singularity is placed at r=0, see Fig. 1):    
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Figure 1: Spherical coordinate system. 

 

Herein an exponential dependence is assumed in radial direction, while the functions gim 
and fijm represent the angular variation. The stress singularities are characterized by the 
generalized stress intensity factors Km as well as the singularity exponents or orders, that 
generally are complex numbers of the form (Re λm-1, Im λm). Singular stresses occur 
when 0 > Re λm -1 > -1. A well-known example is the singularity occurring at a crack 
tip, where σij ~ r-0.5. The orders of stress singularities are known for many elastostatic 
cases, but are still unknown for various geometrical situations and material 
combinations for elastic and piezoelectric multi-material systems. Since analytical 
solutions do not generally exist, and standard numerical methods such as the finite 
element method usually require considerable effort or can sometimes not be used at all 
to determine stress singularity orders, the scaled boundary finite element method is 
chosen for the analysis in this contribution.  

 

THE SCALED BOUNDARY FINITE ELEMENT METHOD 
The scaled boundary finite element method is a semi-analytical method combining the 
advantages of the boundary element method and the finite element method. The 
method, developed by Wolf and Song [1,2] and extended for piezoelectric material 
behaviour by Artel and Becker [3], requires geometric similarity of the analyzed 
structure in the sense of being scalable with respect to a discrete point, the so-called 
similarity center. It can be applied to any anisotropic linear-elastic material behaviour. 
Whereas in the scaling direction a closed-form analytical representation is chosen for all 
relevant field quantities, the method employs a finite element discretization along the 
boundary or in the circumferential direction. Correspondingly, this approach can be 
considered a semi-analytical method. Since the behaviour in the scaling direction is 
obtained as the analytical solution of a system of ordinary differential equations, the 
discretization effort is reduced by one dimension and only the boundary needs to be 
discretized. On the other hand, in contrast to the boundary element method, the scaled 



boundary finite element method does not require a fundamental solution and thus is 
more widely applicable. Compared to the finite element method, the effort required for 
results of comparable quality is significantly lower.  

Singularity orders can be obtained with little effort and high precision by this method if 
the similarity center is placed directly at the location of the singularity. The scaled 
boundary finite element method can be applied to various situations where other 
methods do not apply, and it generally requires less computational effort than other 
methods (e.g. finite element method) for the determination of stress singularity orders. 
This is due to the reduction of the problem dimension mentioned above as well as the 
fact that existent singularities are inherently taken into account by the underlying series 
representation of the asymptotic field quantities. As a consequence, a rather coarse 
mesh yields very accurate results at the similarity center where other methods require a 
very fine discretization to capture the singularity at all. 

For piezoelectric behavior the standard material equations read  

 
T= −σ Cε e E        , = +D eε Εε

 

where σ denotes the stress tensor, ε the strain tensor, C the mechanical stiffness matrix, 
D the electric flux vector, E the electric field strength vector, e the piezoelectric 
coupling matrix, and є the dielectrical matrix. The elastostatic and electrostatic 
equilibrium conditions are  
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where fi are the mechanical body force components and q is the electric body charge. 
Together with the geometrically linear kinematic equations as well as the representation 
of the electric field strength through the electric potential φ 
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this leads to the following weak form of the equilibrium 
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Introducing the scaled boundary coordinates ξ in scaling direction and η and ζ on the 
boundary Γ (see Fig. 2 for the two-dimensional case with ξ and η) and representing the 
boundary by a set of points (x0+xS), (y0+yS), and (z0+zS), the coordinates of a point 
inside the domain can be transformed from a Cartesian coordinate system as follows 
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where (x0,y0,z0) are the coordinates of the similarity center and ξ is the normalized 
scaling factor in radial direction. 

 
 

 
 

Figure 2: Scaled boundary coordinates. 

 

Discretizing the boundary, the geometry can be represented with the help of shape 
functions h and the vectors x, y, z of nodal coordinates as follows 
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The following approximate description of the displacements ui and the electric potential 
φ with the help of the shape functions h and unknown analytical nodal displacement 
functions wh(ξ) 
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for the case of no electric or mechanical loads leads to 
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where 
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The resulting Euler-Cauchy differential equations (together with some boundary 
conditions that are not relevant here) 
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have a solution known to be of the type 
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with a power law dependence in ξ where λk is a modal scaling factor in radial direction 
and the vector Фk denotes the modal displacements at the boundary nodes. This leads to 
the quadratic eigenproblem 
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that can be solved by standard methods for eigenproblems. The advantage of the scaled 
boundary finite element method for the determination of singularity orders is that the 
eigenvalues λk are automatically determined in the solution procedure with high 
accuracy, so the method provides very precise results for the singularity orders in the 
similarity center. 

 

NUMERICAL EXAMPLES 
The singularities considered were two-dimensional geometrical or material line 
singularities and combinations of both as well as their three-dimensional interaction at 
interaction points. As an example, a notch in an interface displayed in Fig. 3a will be 
discussed here since it includes all possible types of singularities. Two two-dimensional 
line singularities – the geometric discontinuity along the notch root Γ1 and the material 
discontinuity along the interface Γ2 – interact three-dimensionally in the interaction 
point S, the similarity center. 

 

              
 a. Geometry         b. Mesh 

Figure 3: Notch in an interface at a free edge. a. Geometry, b. Mesh. 



The situation was analyzed for material combinations of 0°/θ° and ±θ° of unidirectional 
CFRP-material for orthotropic material with the material properties of T300/Epoxy and 
for a fictitious piezoelectric material with the mechanical properties of T300/Epoxy and 
the piezoelectrical and dielectrical properties of PZT-5A. The notch opening angle γ 
was chosen to vary from 0° (interface crack) to 90°.  

The displayed mesh (see Fig. 3b) may be rather coarse, but this is indeed sufficient to 
determine precise singularity orders in the similarity center. Also not the entire 
boundary needs to be discretized since on the so-called side-faces and on the notch 
faces the method inherently presumes strong boundary conditions.  

For the interface crack (γ=0°), the results for the singularity orders of the two two-
dimensional singularities and the three-dimensional interaction point for a material 
combination of 0°/θ° of unidirectional CFRP-material are shown in Fig. 4 in the first 
line for orthotropic material with the material properties of T300/Epoxy and in the 
second line for a fictitious piezoelectric material with the mechanical properties of 
T300/Epoxy and the piezoelectrical and dielectrical properties of PZT-5A. 

 

       

      
Figure 4: Singularity orders for the interface crack at a free edge for a 0°/θ° layup. a-c 

T300/Epoxy and d-f T300 Epoxy / PZT-5A. 

 

It can be seen that for the pure mechanical case, Γ1 yields the known crack singularity 
order, as expected. Comparing the results for this and the interface at a free edge with 
the singularity orders at the three-dimensional interaction point, it is evident that there is 
no clear relation between the singularity orders. In the three-dimensional case, real and 
complex orders occur and they are slightly stronger than the crack singularity order for 
some layups. The results for the piezoelectric materials are qualitatively similar to the 
ones of the orthotropic case. The results are slightly more complex in comparison. 
Again, there is no obvious relation between the singularity orders of the two two-
dimensional singularities and the one of the three-dimensional interaction point. 



Results for the singularity order at the interaction point for varying notch opening 
angles for a material combination of 0°/θ° of unidirectional CFRP-material for both 
materials are shown in Fig. 5.  

 

   

   
 

Figure 5: Singularity orders for the interface notch at a free edge with varying opening 
angles γ for a 0°/θ° layup. a-d T300/Epoxy and e-h T300 Epoxy / PZT-5A. 

 

It can be seen that the singularity orders become less critical for both materials when the 
notch opening angle increases, as expected. For the opening angle of 30°, the strongest 
singularity order thus is already smaller than the known crack tip singularity. The 
results for the different angles resemble each other qualitatively, but where smaller 
angles have complex results these seem to split up into two real eigenvalues for larger 
opening angles. The results for the two-dimensional line singularities Γ1 and Γ2 are not 
shown for the other opening angles, but they also resemble the results for the interface 
crack with weaker singularity orders and the relation between the two-dimensional 
singularity orders and the singularity orders at the interaction point is equally complex. 
Comparing the results for both materials shows that again results for the piezoelectric 
material yield additional and stronger singularity orders.  

The same situations were analyzed for a material combination of ±θ° of unidirectional 
CFRP-material. Fig. 6 shows the results for the singularity orders of the two two-
dimensional singularities and the three-dimensional interaction point for the interface 
crack (γ=0°), again in the first line for T300/Epoxy and in the second line for the 
fictitious T300/Epoxy / PZT-5A material. 

As for the other layup, it is noticeable that it seems impossible to deduce the three-
dimensional singularity orders from the two-dimensional singularities in an easy 
manner. The results differ to some degree from the 0°/θ° results in that the largest 
singularity orders occur for different angles, the largest occurring singularity orders and 
the overall picture resemble the results for the other layup. All observations comparing 
results for the different materials still hold.  

 

 



      

                                           
 

Figure 6: Singularity orders for the interface crack at a free edge for a ±θ° layup. a-c 
T300/Epoxy and d-f T300 Epoxy / PZT-5A. 

 

Results for a material combination of ±θ° of unidirectional CFRP-material for varying 
notch opening angles for the singularity orders at the three-dimensional interaction point 
are shown in Fig. 7 for the same materials as above. 

 
 

 

 
 

Figure 7: Singularity orders for the interface notch at a free edge with varying opening 
angles γ for a ±θ° layup. a-d T300/Epoxy and e-h T300 Epoxy / PZT-5A. 

 

Again, the singularity orders decrease with increasing opening angles. As for the 
interface crack, the strongest singularity orders for all opening angles are comparable in 
size to the strongest singularity order for the 0°/θ° layup, but they do not necessarily 
occur for the same angle θ. The results overall resemble the results for the other layup. 
It also can be observed again that the type of singularity order is purely real for some 



angles and complex for others. The results again show additional and stronger 
singularity orders for the piezoelectric material compared to the linear-elastic material.  

In summary, the results show that singularity orders at three-dimensional interaction 
points are of a complex nature and can not be predicted easily from the corresponding 
two-dimensional singularities. Thus, there is a need for an analysis tool that can be used 
for such situations. By means of the scaled boundary finite element method, singularity 
orders can be determined with low effort. The singularity orders occurring can be real or 
complex, and they can be stronger than the known crack tip singularity. For the 
analyzed situations, piezoelectric materials yield additional and often stronger 
singularity orders than linear-elastic materials. 

 

CONCLUSIONS 
Stress singularity orders of various two- and three-dimensional situations can be 
determined by means of the scaled boundary finite element method. The effort generally 
is significantly lower than for standard methods. Complex results for singularity orders 
at three-dimensional interaction points show the need for an efficient tool for the 
analysis of such situations. The scaled boundary finite element method in the extended 
formulation for piezoelectric materials is such an efficient tool in elastic and 
piezoelectric multi-material systems. 
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