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Abstract  

The problem of stress concentrations in the 
area of holes with elastic isotropic or anisotropic 
inclusions is of particular significance in the design 
of multilayered fibre- and textile-reinforced com-
posite structures. For the purpose of simulating such 
notch zones in anisotropic multilayered composites, 
analytical methods offer decisive advantages since 
they, in comparison to numerical methods, allow 
weighting of influencing parameters and in this way 
permit a physical interpretation of complicated 
notch phenomena.  

Sophisticated analytical solution methods for 
the stress concentration problem in multilayered 
composites with elastic inclusions were developed 
on the basis of layer wise solutions and have been 
verified by extensive experimental and numerical 
finite-element (FE) investigations. Finally some pa-
rameter studies and sensitivity analyses are pre-
sented. 
 
 
1 Introduction 

The fields of application of fibre- or textile-
reinforced composite materials have been expanded 
considerably in recent years. While up to now the 
reinforcing structure mostly was constructed of uni- 
or bidirectional fibre-reinforced layers, textile semi-
finished reinforcing products in form of multi-axial 
knitted, woven or braided preforms have lately been 
gaining increasing importance.  

However, to utilize the large lightweight design 
potential of this group of materials, particularly in 
the case of future-oriented multi-material design me-

thods, the provision of adapted calculation concepts 
for critical areas is indispensable. In literature (for 
instance in [1]-[5]) analytical solutions for the 
calculation of fibre-reinforced composite plates with 
cut-outs for various cases of geometry and loads can 
be found, which are mainly based on the fundamen-
tal works of LEKHNITSKII [6].  

The stress concentration behaviour of cut-outs 
with elastic inclusions is often of great importance 
for the design of multilayered composites in multi-
material design, since related issues occur in form of 
subproblems in the evaluation of rivets, screws, etc. 
Solutions for multilayered composites with elastic 
isotropic or anisotropic inclusions however are not 
reported very often [7], [8].  

During the last years, sophisticated analytical 
calculation methods have been developed at the ILK 
for stress-concentration problems of generally struc-
tured multilayered composites (MLC) with cut-outs 
of different shape or for multilayer composites with 
circular or elliptical elastic inclusions subjected to 
arbitrary plate-bending and membrane loads. These 
methods enable a layer-by-layer pre-calculation of 
the entire stress and distortion field at the edge of the 
notch as well as in the whole plate. To have no 
restrictions whatsoever with regard to the composite 
layup it is necessary to pursue superordinate ap-
proaches in the expanded stress-deformation analy-
sis of generally structured anisotropic multilayered 
composites, which also take into consideration the 
unfamiliar extension-bending coupling effects 
occurring in asymmetrical composites [9]. 
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2 Analytical calculation methods for anisotropic 
plates with elastic inclusions  

2.1 Plate equation 
The starting point for the analysis of aniso-

tropic multilayered composites is the HOOKE 
deformation law for orthotropic materials 

ΔΔ +Θ+= MC ijijklijklij βαεσ  (1) 

with the stresses σij, the distortions εij and the 
temperature and moisture influence αijΘΔ and βijMΔ. 

In doing so the heterogeneous single layer of 
the composite, composed of reinforcing fibres and 
matrix material, is regarded as a blurred continuum 
by applying homogenization techniques. Based on 
this description of the mechanical behaviour of the 
single lamina, in this paper an expanded layer theory 
is called upon for the description of the structural 
behaviour of the composite. With aid of the kine-
matic relations,  
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(2) 

associating the displacements of the neutral plane u0, 
v0 and w0 in x-, y-, z-direction with the strains εx, εy, 
γxy and curvatures κx, κy, κxy, the structural law for 
multilayered composites is derived, taking into con-
sideration thermal- and media-related influences  
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(3) 

(Aij), (Bij), (Dij): extensional, extension-bending 
coupling and bending stiffnesses 
of multilayered composites, 

ε0
i,, γ0

ij , κk: distortions of the neutral plane, 
Ni , Mi

T, Ni
Q, Mi

Q: thermal-related or media-induced 
force resultants and moment 
resultants. 

In multilayered fibre-reinforced composite 
materials, due to coupling of force resultants and 
curvatures as well as coupling of moment resultants 
and strains occurring in asymmetrical composites, a 
separation of the plate-bending and membrane prob-
lems often is not possible. Therefore, expanding on 
the classic plate theory by KIRCHHOFF, the formula-

tion of the equilibrium of force and moment resul-
tants at the differential plate element is supple-
mented by the membrane force resultants. A 
generalizing plate equation is derived from these 
expanded equilibrium equations, which in particular 
considers the above described coupling effects in 
asymmetric composites (see also [10], [11]). The 
partial differential equation system (PDES) of this 
generalizing plate equation can be written down by 
means of a differential operator matrix in compact 
and clear form as a matrix equation, which uses the 
expanded structural law for multilayered composites 
(3).  

( ) ( )
( ) ( )

( )
( )

( )
( )

( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
Δ+⎥

⎦

⎤
⎢
⎣

⎡
Δ−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
Δ⎥

⎦

⎤
⎢
⎣

⎡
Δ Q

i

Q
i

T
i

T
i

i

iT

ijij

ijij

M
N

M
N

M
N

w
v
u

DB
BA

0

0

0

 

(4) 

with  
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u0, v0, w0: displacements of the neutral plane, 
P:  vector of external loads. 

This physically illustrative and well manage-
able formal representation of the well known PDES 
(see for example [12]-[14]) was first given by 
Lepper [15]. 
2.2 Complex-valued displacement functions and 

method of conformal mapping 
For the further investigations, an infinite plate 

with a finite elliptical or circular elastic inclusion is 
selected as mathematical equivalent. To determine 
solutions for the PDES of the plate equation (4) the 
system is equivalently converted into a single 
differential equation in of eighth-order. Applying the 
method of complex-valued displacement functions 
as an extension of the method of complex-valued 
stress functions, which is well established in plane 
theory of elasticity, the solution of the generalized 
plate equation (4) can be written in the form 
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k
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with four analytical functions Ψk(zk) referring to the 
four different complex planes zzz kk λ+=  and z=x+iy. 
The complex parameters λk are calculated as roots of 
the characteristic equation, which results from 
inserting (6) into the converted differential equation 
in w0 arising from (4). Since, in the case of real 
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materials, it can be shown, that from the eight differ-
ent roots of the characteristic equation always two 
by pairs have to be conjugated complex, only four 
independent roots have to be taken into account in 
(6). 

For the effective handling of boundary condi-
tions for the stress concentration problem, the 
notched area is projected onto the exterior of a unit 
circle using the method of conformal mapping. This 
opens the possibility of a uniform approach for the 
determination of the respective displacement func-
tions, independently of the actual notch contour. In 
this special case the conformal mappings of the unit 
circle E in the ζ-plane onto the area of the plate S in 
the z-plane and the assigned affinely distorted areas 
S(k) in the respective zk-planes are determined, where 
the points A, A(1),…, A(4), which are assigned to each 
other by the affine projections, must have the same 
pre-image Aζ on the edge of the unit circle E (Fig. 1) 
[16]. 
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Fig. 1.  Conformal mappings of the ζ-plane onto the 

z- and zk-planes 
 
In the case of circular or elliptical notches, 

which are covered by this publication, these map-
pings result from 
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with ζ ≡ ζk and a, b as the semi-axes of the elliptical 
notch. 
2.3 Boundary conditions 

For the solution of the respective boundary 
value problem, the complex valued displacement 
functions and with this the analytical functions Ψk in 
(6) have to be adapted to the boundary conditions. In 

order to take into consideration not only the effects 
resulting from the elastic inclusion but as well addi-
tional technically relevant external loads, the actual 
state of stress is decomposed using the superposition 
principle as follows (see as well Fig. 2): 

I a notched plate loaded on the outer and in-
ner boundary 

Ia a finite, unnotched plate with loads on the 
outer edge 

Ib an infinite, notched plate with loads at the 
edge of the notch, adapted in such a way 
that, with superposition of Ia and Ib, an 
overall unloaded notch edge results, 

Ic an infinite notched plate with the 
corresponding loads from I at the notch 
edge, 

II a finite elastic inclusion loaded at the outer 
boundary. 

 

 
Fig. 2.  Decomposition of the coupled mem-

brane-plate problem by means of superposition 
 
With aid of this decomposition of the problem 

it is possible to take into consideration the dynamic 
boundary conditions on free boundaries, resulting 
from technically relevant external loads at the outer 
boundary (Fig. 3a) 
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and the transition condition on the edge between 
surrounding plate and elastic inclusion  (Fig. 3b) 
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For dealing with the subproblem II (the elastic 
inclusion, see Fig. 2), an adapted approach for a dis-
placement function is chosen 
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By complex Laurent series expansion, a 
comparison of coefficients on the edge between 
plate and inclusion and an additional boundary 
condition corresponding to the requirement of the 
existence of a reference point, a linear system of 39 
equations for the 39 unknowns is to be determined.  
3 Experimental and numerical FE-verification 

For the verification of the developed calcula-
tion methods for multilayered composites with elas-
tic inclusions, extensive experimental and numerical 
finite-element (FE) investigations have been carried 
out. These comparative studies have been conducted 
on multilayered composites build from carbon-fibre 
reinforced polymer (CFRP) UD-layers (parameters: 
E|| = 135 GPa, E⊥ = 8.2 GPa, G||⊥ = 4.7 GPa, ν||⊥ = 
0.3) with different lay-ups.  

Representative results are presented here from 
the large number of experimental and numerical in-
vestigations. 
 

3.1 Experimental results 
In Fig. 4a the experimental set-up is shown, 

where a MLC-plate with an elastic PU-inclusion is 
statically loaded in a tension test. Thereby the grey-
scale correlation method (GCM) as modern 3D-field 
measurement method is applied for the determina-
tion of the displacement- and strain-fields (Fig. 4b).  

As an example in Fig. 5 a comparison of the 
analytically calculated and experimentally deter-
mined decay behaviour of εx- and εy-strains on the 
0°-radian (direction of tension) and the 90°-radian 
(perpendicular to the direction of tension) is pre-
sented. The diagram shows the good correlation be-
tween experimental and analytical results. 
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Fig. 5.  Comparison of the strain decay behaviour for 

a [+45/-45]s-CFRP-plate with elastic PU-inclusion 
under unidirectional Nx tension load 

 
3.2 Numerical (FE) results 

To reduce the number of complex experimental 
investigations, a large number of FE-calculations on 
different MLCs with isotropic and anisotropic inclu-
sions and different loading-combinations on the 
outer boundary have been carried out. Fig. 6 shows 
an example for the FE-model of a MLC-plate with 
an elliptical elastic inclusion, loaded by pure shear-
forces on the outer boundary. In addition, to inhibit 
rigid body motions, the translative and rotatory de-
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Fig. 3. Boundary and transition conditions for multilayered anisotropic plates with elastic inclusions 

a) dynamic boundary conditions on free outer edges of the plate 
b) dynamic and kinematic transition conditions on the edge between plate and inclusion 

a)  b)  
Fig. 4. Grey-scale measurement of a [+30/-30]s-

CFRP-plate with elastic PU-inclusion  
a) experimental set-up 
b) grey-scale results (major strains) 
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grees of freedom are blocked for one node in the 
centre of the inclusion. 

 

 
Fig. 6.  MLC-plate with an elliptical elastic inclu-

sion, loaded under pure shear-forces load  
 
As representative results, in Fig. 7 a compari-

son of the analytically and numerically calculated 
decay behaviour of the distortions along the 0°-ra-
dian of a symmetric [+45/-45]s-CFRP-plate with an 
isotropic elliptical Al-inclusion is presented. The 
plate is loaded under unidirectional tension in x-
direction. For all distortions εx, εy and γxy a very good 
correlation of the numerical and the analytical re-
sults is observed. 
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Fig. 7.  Comparison of the distortion-decay be-

haviour in 0° direction for a [+45/-45]s-CFRP-plate 
with elliptical elastic Al-inclusion under unidirec-

tional Nx tension load 
 
As a second example a comparison of the de-

cay behaviour of the distortions along the 0°-radian 
of an unsymmetric [+45/-45]-CFRP-plate with a 
symmetric [+45/-45]s-CFRP-inclusion is presented 
in Fig. 8. The plate is loaded with uniform tension in 
x- and y-direction. The distortions have been calcu-
lated and compared for the laminate top and lami-
nate bottom.  

For this example again a very good correlation 
of the numerically obtained and the analytically 
calculated distortion values εx, εy and γxy on the lami-
nate top and bottom is observed. Such a very good 
correlation can be observed for all problems 

concerning unsymmetric composites, which have 
been assayed. This outlines in an impressive way, 
that the developed calculation method is applicable 
for the whole field of symmetric and unsymmetric 
composites under pure or combined plate-bending 
and membrane loadings.  
3.3 Conclusions from the experimental and nu-

merical investigations 
The acquired experimental results as well as 

the numerical results established by the finite-ele-
ment method show a good correlation with the pre-
calculated analytical solutions and thus endorse the 
developed theory in an impressive way. Based on 
this strong support, the developed calculation meth-
ods offer a very good basis for the development of 
new fast dimensioning-tools for the end-user dealing 
with multilayered unidirectional or textile-reinforced 
composites with elastic inclusions. The method is 
not only applicable for symmetric composites but as 
well includes the influences of the extension-bend-
ing coupling and therefore can be used for 
unsymmetric composites as well. This is of great 
importance, since unsymmetric composites are more 
and more often used in industrial application.  
4 Parameter studies on multilayered composites 

with elastic inclusions 
The newly developed analytical methods for 

the stress concentration analysis of MLC with elastic 
inclusions show their great potential in the case of 
systematic and fast parameter studies and sensitivity 
analysis. Furthermore, their physical transparency 
provides the opportunity to interpret the occurring 
and sometimes unusual effects. Therefore the devel-
oped methods have been implemented in fast and 
easy to use computer programs.  
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Fig. 8.  Comparison of the distortion-decay be-

haviour in 0° direction for a [+45/-45]-CFRP-plate 
with an elastic [+45/-45]s-CFRP-inclusion under 

combined Nx, Ny tension and Nxy shear load 
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4.1 Comparison of notched plates with and with-
out inclusion 
As a first example for the use of the developed 

method a comparison of the stress-fields of a 
notched [0/+45/-45/90]s-CFRP-plate with elastic Al-
inclusion and without inclusion is presented. The 
plate is loaded with uniaxial tension in x-direction 
Nx = 40 N/mm. The diameter of the hole and the 
inclusion is ∅ = 20 mm. 

Fig. 9 shows a comparison of the σx-stress-
fields for different layers of the composite. It can be 
observed, that in both cases the stress-values are of 
the same size in a sufficient distance from the inclu-
sion and the hole respectively. On the other hand, in 
the area of the disturbance the σx-layer-stresses in 
the 0°-layer for the plate without inclusion reach the 
height of 155 MPa while in the plate with elastic Al-
inclusion the stresses are considerably lower. This 
effect can be observed for all layers. In the case pre-
sented here, the elastic Al-inclusion leads to an over-
all reduction of the stress concentrations. 

In addition this example demonstrates once 
again, that for dimensioning multilayered com-

posites a layer by layer analysis of the stress- and 
strain-fields is of great importance. 
4.2 Sensitivity analysis on the size of the inclu-

sion  
In a second example, the influence of the 

dimension of the elastic inclusion on the layer wise 
stress-concentration-field is studied. Fig. 10 shows 
the diagrams for a symmetric [0/+45/-45/90]s-CFRP 
multilayered composite with different inclusion 
diameters under unidirectional tension loading in x-
direction Nx = 60 N/mm. As inclusion-material Alu-
minum was chosen. The selected layerwise diagrams 
in Fig. 10 show only the dominating stress for the 
layers, i. e. the σx-stress for the 0°-layer (Fig. 10 (a)) 
and the σy- stress for the 90°-layer (Fig. 10 (b)). 

From the presented results it can be seen, that 
the stress-concentration directly at the edge between 
inclusion and surrounding plate is independent on 
the size of the inclusion. In contrast to this independ-
ency on the size, the decay behaviour of the stresses 
clearly depends on the size of the inclusion. In suffi-
cient distance of the inclusion the disturbance of the 
stress-field has decayed, as can bee seen from Fig. 
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Fig. 9.  Comparison of the  σx-stress-fields for a multilayered [0/+45/-45/90]s-CFRP-plate with and without 

elastic inclusion under tension load Nx = 40 N/mm 
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Fig. 10. Layerwise decay behaviour of selected stresses in a [0/+45/-45/90]s-CFRP MLC depending on the 
diameter of the Al-inclusion  under tension load Nx = 60 MPa 
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10. The size of this area and especially the gradient 
of the decrease of the size-influence varies with the 
diameter of the inclusion: The bigger the size of the 
inclusion the greater the area where the influence is 
significant and the lower the gradient of the de-
crease. This underlines once more, that for realistic 
strength criteria for notched MLC not only the abso-
lute values of the stress concentrations directly at the 
edge of the notch / inclusion should be considered, 
but as well the decay characteristics should be taken 
into account, as it is done in the point-stress-criteria 
or the average-stress-criteria, which reflect the so 
called “microsupport” effect according to NEUBER 
[21] without mentioning it explicitly. 
4.3 Parameter study on the influence of the 

orientation of the inclusion 
 As a final example a parameter study on the 

influence of the orientation of an anisotropic elastic 
inclusion on the stress-concentration field is pre-
sented. As object of this study a symmetric [+45/-
45]s-CFRP MLC-plate is chosen with an anisotropic 
inclusion made from the same material. The orienta-
tion of the inclusion is rotated around the z-axis, so 
it varies with regard to the orientation of the plate. In 
the example a pure unidirectional tension load in 0°-
direction and a plate bending load are applied (Fig. 
11). 

 

a)  b)  

Fig. 11. Models for the parameter study on the inclu-
sion orientation 
a) tension loading Nx 
b) plate bending Mx  

 
In Fig. 12 the layer σx-stresses are presented 

exemplarily for this parameter variation. For inclu-
sion orientations of 0° and 180° the laminate of the 
MLC-plate and the inclusion have the same orienta-
tion. For these orientations an undisturbed plate is 
dealt with from a macroscopic point of view since 
the model is based on the assumption of perfect 
adhesion between plate and inclusion. In the dia-
grams Fig. 12 a) and Fig. 12 b) this is reflected by 
the fact, that the stresses are constant along the notch 
boundary.  

In case of the tension load starting from the 
constant stresses for the orientation °= 0E

rotω  a 
significant increase of the maxima of stresses over 
the notch boundary orientation is observed with in-
creasing E

rotω until for an orientation of 45° the abso-
lute extremal stress-values are reached. For the 
orientation of 45° the direction of the maximal E-
modulus of the inclusion are 0° and 90° and thus are 
parallel to the directions of the minimal E-modulus 
of the MLC-plate. With a further increasing angle 

°≤<° 9045 E
rotω  the extrema of the stresses decrease 

until for °= 90E
rotω  the stresses are again constant 

over the notch boundary coordinate. For the orienta-
tion of 90° the directions of the maximal E-modules 
of the inclusion and the MLC-plate are parallel 
again. Since the composite is regarded as a contin-
uum homogenized over the thickness, in the case of 
pure membrane loads the orientation of 90° is 
equivalent to the orientation of 0°. Thus the further 
stress distribution for °≤<° 18090 E

rotω  can be ob-
tained by reflection on a plane through °= 90E

rotω . 
For the plate bending load the behaviour is 

different. Of course the stresses for °= 0E
rotω  and 

°= 180E
rotω  are constant over the notch boundary 

coordinate. But since the stacking sequence of the 
composite has great influence in the case of bending 
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Fig. 12. σx-layer-stresses for the variation of the inclusion orientation E
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loads, no further symmetry is observed, especially 
the orientation °= 90E

rotω  is not equivalent to 
°= 0E

rotω . 

5 Conclusions 
For the problem of multilayered composites 

with elastic isotropic or anisotropic inclusions exam-
ined here, analytical solution methods based on 
complex valued displacement functions and the 
method of conformal mapping have been developed. 
Here, we should emphasize that not only stresses, 
distortions and displacements directly at the edge of 
the notch can be calculated, but also their distribu-
tion throughout the entire plate. Experimental 
investigations have been carried out, which show a 
very good correlation of the measured and the calcu-
lated results. Additionally a vast number of FE 
calculations were performed with symmetrical and 
unsymmetrical composite structures for further 
verification of the developed calculation methods. A 
comparison of these numerically obtained values 
and the results obtained by means of the developed 
analytical solutions also showed a high level of 
congruence. Especially it was proved, that the devel-
oped calculation method is applicable for the whole 
field of symmetric and unsymmetric composites, 
taking into account the material induced coupling of 
the plate-bending and the membrane problem.  

The performed parameter studies demonstrate 
that very complex mechanisms are acting in MLC 
plates in the area of holes with elastic inclusions 
Therefore, in the interest of dimensioning structures 
weakened by elastic inclusions in line with material 
and component characteristics, a precise layer-by-
layer analysis of the distribution of stresses and 
distortions is absolutely indispensable. Starting from 
this layer-by-layer approach with additional 
consideration of so called physically based failure 
criteria, for instance, according to PUCK [17]-[19] or 
CUNTZE [20] and under additional consideration of 
the so-called microsupport effect according to 
NEUBER [21], the development of new failure crite-
ria for notched multilayered composites is currently 
one of the focal points of ongoing research work at 
the ILK [22].  
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