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Abstract  

The understanding of the viscoelastic behavior 
that accounts for the heterogeneous composite 
material’s microstructure and the temperature-
dependency of properties still requires further study 
and development. A homogenization-based method 
is used to study the property of time-temperature- 
dependent viscoelastic behavior of unidirectional 
fiber reinforced composites with thermorheological 
simple matrix, and a novel multi-scale method for 
analyzing the viscoelastic property of unidirectional 
composite materials is developed. The character of 
the viscoelastic relaxation law subject to variation in 
temperature is investigated, and the global effective 
viscoelastic relaxation modulus considering the 
temperature-dependency of properties was given. 
Numerical examples for a plate of unidirectional 
fiber reinforced composite material are presented. 
Through the analysis of the thermal strain of the 
plate, it is found that the time effect of the relaxation 
is small, so the coefficient of thermal expansion may 
be given by the instantaneous  thermal deformation. 
 
 
1 Introduction 

Composite materials have been widely used in 
advanced industries for their inherent advantages, 
such as designable character, high specific strength 
and specific stiffness. Researches have physically 
shown that composite materials can exhibit 
viscoelastic behavior, particularly those containing 
polymers and viscoelasticity matrix [1-2]. 

The understanding of the viscoelastic 
behaviors for heterogeneous composite materials 
that accounts for their microstructures still requires 
further study and development. Therefore, it is very 

important to study micro-mechanical methods for 
predicting numerically or analytically the time- 
temperature-dependent viscoelastic properties of 
composite materials based on the heterogeneous 
microstructural details of composite materials. 

Existing micromechanical methods for 
predicting the properties of materials include self-
consistent theory [3], Eshelby-Mori-Tanaka’s 
method [4,5], the cells model [6,7], homogenization 
method [8-12] and others. These methods have been 
successfully used to predict the elastic properties of 
composites [13]. The micromechanical methods 
have been employed to predict the viscoelastic 
properties of composite materials [14-19]. For the 
unidirectional fiber reinforced polymeric matrix 
composites, based on the micromechanical theory 
and the elastic-viscoelastic correspondence principle, 
Li and Weng [14] studied the attenuation laws with 
time of the five independent viscoelastic constants of 
composite materials. Liang and Du [15] used the 
Eshelby equivalent inclusion method to study the 
creep constitutive relations of particulate reinforced 
composites, and developed the variation laws for the 
moduli of materials with time, inclusion volume and 
load. Based on the homogenization methods, Liu et 
al. [16] predicted the viscoelastic properties of 
multi-layered materials and unidirectional fiber 
reinforced composites, and investigated the effect of 
the inclusion’s volume fraction on the relaxation 
modulus. Chung et al. [17] proposed a micro/macro 
homogenization approach for viscoelastic creep 
analysis with dissipative correctors for 
hererogeneous woven-fabric layered materials.  

Seiferta et al. [18] employed finite element 
method to predict the viscoelastic properties of an E-
glass/vinylester plain weave, woven roving 
composite material at three different temperatures, 
and compared them with experimental data. These 
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studies gave the viscoelastic laws at constant 
temperatures, however the properties of composite 
materials are temperature-dependent. Though 
Seiferta et al. [18] gave the viscoelastic properties of 
composite material for three different temperatures, 
the influence of the varying temperature history on 
the property of composite materials wasn’t 
considered. The study on the viscoelastic laws under 
varying temperature states has rarely been reported. 
In our previous work [19], the viscoelastic laws 
under a very particularly varying temperature states, 
in which the temperature has a jump at a specific 
time (e.g, at the beginning) and then keeps constant, 
were studied. The viscoelastic properties under 
general varying temperature stage should be 
investigated. 

Zhang et al. [20] systemically studied the 
viscoelastic properties of single phase materials 
under time-dependent temperature change, and 
expressed the viscoelastic constitutive equations 
under varying temperature states in the same form as 
that under constant temperature states. For 
composite materials, although the constitutive 
equations under a time-independent temperature 
state can be expressed as the same form as that of a 
single phase, it is still unknown if the constitutive 
equation under time-dependent varying temperature 
state can be expressed as a similar form. 

The main purpose of this paper is to develop a 
novel multi-scale method for analyzing the 
viscoelastic properties of composite materials, and to 
investigate the characteristics of the viscoelastic 
relaxation law under time-dependent temperature 
changes. Based on the homogenization theory, the 
multi-scale analysis methods of the viscoelastic 
properties and the effective thermal stress relaxation 
laws are studied. Numerical examples are presented 
in the end of the paper. 

 
2 Time-Temperature-Dependent Constitutive 
Equation of Unidirectional Composite Materials 

In this paper, we will investigate the time-
temperature-dependent constitutive equation of 
unidirectional fiber reinforced composite materials. 
The fibers are elastic materials and the matrix is a 
thermorheological simple material. The temperature 
considered here is time-dependent.  
2.1 Viscoelastic Constitutive Equation 

Owing to the heterogeneity of unidirectional 
fiber reinforced composites, the constitutive 
equation is different from position to position. 

Denote the domains occupied by the matrix and 
fiber as mΩ  and fΩ , respectively, then the total 
domain of the composites is the sum of this two 
domains. 

 f mΩ = Ω + Ω  (1) 

In the fiber phase domain, the material exhibits 
elastic property, and the constitutive equation can be 
expressed as 

 ( , ) ( , ),ij ijkl kl fx t E x t xσ ε= ∈Ω  (2) 

For the thermorheological simple materials, 
through the horizontal function ( )Tχ , the curve of 
relaxation at different temperatures can be brought 
into a single one on the reduced-time scale ξ  
( ( )t Tξ χ= ), thereby forming the basis of the ‘time-
temperature superposition principle’. Experimental 
data of many polymers indicated the existence of 
such a shift factor Tα , for that 

  log ( ) log TTχ α= −  (3) 

Based on the William-Landel-Ferry equation 
(WLF), one has: 

 1

2

( )log r
T

r

C T T
C T T

α −= −
+ −

 (4) 

Where, the parameter 1C  and 2C are related to the 
free volume of the polymer and are dependent on the 
chosen reference temperature rT . 

For a temperature change history T(t) relative 
to the reference temperature rT , the reduced-time 
scale ξ  is given by 

 1 20
exp[ ( ) ( ( ))]

t
C T C T dξ η η η= +∫  (5) 

Thus, the constitutive equation of materials in 
the matrix domain can be expressed as:  

 
0

( ) ( )( ) ( ')[ ]
t kl

ij ijkl kl
d dTt G d

d d
ε τ τσ ξ ξ α τ

τ τ
= − −∫  (6) 

where,  

 1 20
exp[ ( ) ( ( ))]C T C T d

τ
ξ η η η′ = +∫  (7) 

By the integral transition, and t, τ  being 
replaced by ξ , ξ ′  respectively, then Eq.(5) is 
rewritten as: 
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0

( ') ( ')( ) ( ')[ ] '
' '

kl
ij ijkl kl

d dTt G d
d d

ξ ε ξ ξσ ξ ξ α ξ
ξ ξ

= − −∫  (8) 

If we define the relaxation modulus of the fiber 
material as 

 ( ) ( )f
ijkl ijklG Eξ =  (9) 

Then, the constitutive equation of the fiber can be 
expressed as a similar form as Eq.(8). 

0

( ') ( ')( ) ( ')[ ] '
' '

f kl
ij ijkl kl

d dTt G d
d d

ξ ε ξ ξσ ξ ξ α ξ
ξ ξ

= − −∫ (10) 

2.2 Effective Time-Temperature-Dependent 
Viscoelastic Properties of Composites 

For a unidirectional fiber reinforced composite 
material with elastic fibers distributed periodically 
in a thermorheologically simple viscoelastic matrix, 
the viscoelastic governing equation of the material 
under the action of body forces, tractions and 
temperature increments, can be expressed as 

 

{ }

{ ( )} d d d 0,

V= ( ) , 0

t

i
ij i i i i

j

d

vt f v t v s
x

v

∂σ
∂Ω Ω Γ

Ω − Ω − =

∀ ∈ ∈Ω Γ =

∫ ∫ ∫
v x x v

 (11) 

Substituting Eq.(10) into Eq.(11), we then have: 

 
2

0

( , ) ( , )( , )

d d d 0, V
t

k
ijkl kl

l

i
i i i i

j

u TG d d
x

v f v t v s v
x

ξ ∂ ξ ∂ ξξ ξ τ α ξ
∂ ξ ∂ξ

∂
∂

Ω

Ω Γ

⎡ ⎤′ ′′ ′− −⎢ ⎥′ ′∂⎣ ⎦

Ω − Ω − = ∀ ∈

∫ ∫

∫ ∫

x xx

  (12) 

Laplace transformation of Eq. (12) yields 

2

0

( , )( , ) ( , )

d d d 0, V
t

k
ijkl kl

l

i
i i i i

j

uG s d T s d
x

v f v t v s v
x

ξ ∂ ξ τ α ξ
∂ ξ

∂
∂

Ω

Ω Γ

⎡ ⎤′
′−⎢ ⎥′∂⎣ ⎦

Ω − Ω − = ∀ ∈

∫ ∫

∫ ∫

xx x
 (13) 

Based on the idea of homogenization theory 
[8,11,12], displacements can be expressed as a 
double-scale asymptotic series: 

0 1 2 2( , ) ( , ) ( , , ) ( , , )i i i iu t u t u t u tε ε= + + +x x x xy y (14) 

Substituting Eq. (14) into Eq. (13), equating 
the terms with the same power of ε  yields: 

 

0 1 0
[( )

]d 0, ( , )

k k i k i
ijkl

l l j l j

i
kl Y

j

u u v u vsG
x y y y x

vT x y V
y

α

Ω

ΩΧ

∂ ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂

∂
− Ω = ∀ ∈

∂

∫

v
 (15) 

0 1 1 2
[( ) ( )

]d d d 0,

( , y)

t

k k i k k i
ijkl

l l j l l j

i
kl i i i i

j

Y

u u v u u v
sG

x y x x y y

vT f v t v s
x

x V

α

Ω

Ω Γ

Ω Χ

∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂

∂
− Ω − Ω − =

∂

∀ ∈

∫

∫ ∫
v

(16) 

Where, 

  Ω Y( , ) ={ ( , ) ( , ) ,

                ( , ) ( , ), 0}d

x y V

Y
×∀ ∈ ∈Ω× Υ

+ = Γ =

v v x y x y

v x y v x y v
 

Taking the limit 0ε →  and considering the 
periodic characters of the functions, Eqs. (15) and 
(16) become 

{ }

0 1

Y

Y

( ) d 0,

(y) = ( ) Υ, ( Y) ( )

k k i
ijkl ijkl kl

l l j

u u vsG G T Y
x y y

V

α
⎡ ⎤∂ ∂ ∂+ − =⎢ ⎥∂ ∂ ∂⎣ ⎦

∀ ∈ ∈ + =

∫

v v y y v y v y

  

  (17) 
0 11{ [( ) ]d }d

d d 0,     ( , )
t

k k i
ijkl klY

l l j

i i i i Y

u u vsG T
Y x y x

f v t v s x y V

α
Ω

ΩΧΩ Γ

∂ ∂ ∂
+ − Ω

∂ ∂ ∂

− Ω − = ∀ ∈

∫ ∫

∫ ∫

y

v
 

  (18) 
Eq. (18) is linear about 1

ku , whose solution can 
be expressed as: 

 1 1 1T u
k k ku u u= +  (19) 

where, 1T
ku  and 1u

ku  are respectively the 
solutions of the following two equations: 

1

Y
d 0, ( ) Vk i

ijkl kl Y
l j

u vsG T
y y

θ
α

⎡ ⎤∂ ∂
− = ∀ ∈⎢ ⎥∂ ∂⎣ ⎦

∫ y v y  (20) 

 
1 0

Y
d 0, ( ) V

u
k k i

ijkl Y
l l j

u u vsG
y x y

⎡ ⎤∂ ∂ ∂
+ = ∀ ∈⎢ ⎥∂ ∂ ∂⎣ ⎦

∫ y v y  (21) 

Owing to the linearity of Eqs.(20) and (21), 
Eq.(19) can be expressed as: 

 ( )1 0 , 1,2,3kl
i i k l iu u x T iχ ∂ ∂= − + Ψ =  (22) 
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Where, the generalized functions ( , )kl
i sχ y  and 

( , )i sΨ y  are respectively the solutions of the 
following two equations: 

Y
( ) d 0, ( , ) V

mp
k i

ijmp ijkl Y
l j

vG G Y
y y

∂χ ∂
∂ ∂

− = ∀ ∈∫ v x y  

 (23) 

Y
( ) d 0, ( , ) Vk i

ijkl kl Y
q j

vsG Y
y y

∂ ∂α
∂ ∂
Ψ

− = ∀ ∈∫ v x y  

 (24) 
Introducing Eq.(22) into Eq. (18) yields 

 

0
H d d

d 0, ( ) V
t

k iH
ijkl ij i i

l j

i i

u vs G T f v
x x

t v

∂ ∂β
∂ ∂Ω Ω

ΩΓ

⎡ ⎤
− Ω − Ω⎢ ⎥

⎣ ⎦

− Γ = ∀ ∈

∫ ∫

∫ v x
 (25) 

where 

 H
Y

1 [ ]d
Y

kl
m

ijkl ijkl ijmn
n

G G G Y
y

∂χ
∂

= −∫  (26) 

 H
Y

1 [ ]d
Y

k
ij ijkl kl ijkl

l
G G Y

y
∂β α
∂
Ψ= −∫  (27) 

Eq.(25) is similar to Eq.(12), and H
ijβ  has the 

same role as ijkl klG α  in Eq. (12). Therefore, H
ijklG  

represents the Laplace transformatin of the effective 
viscoelastic relaxation modulus of composites, and 

H
ijβ  is defined as the effective time-dependent 

thermal relaxation modulus (ETTRM). 
ETTRM can be expressed in terms of ( , )kl

i sχ y  
as 

 H 1 [ ]d
ij
m

ij ijkl kl mnkl klY
n

G G Y
Y y

∂χβ α α
∂

= −∫  (28) 

In fact, Y( , ) Vkl
i sχ ∈y , thus, 

[ ] d 0
ij

k m
mnkl kl mnklY

l n
G G Y

y y
∂ ∂χα
∂ ∂
Ψ− =∫ . 

Considering this fact, the following equations can be 
obtained: 

 H 1 [ ]d
ij
m

ij ijkl kl mnkl klY
n

G G Y
Y y

∂χβ α α
∂

= −∫  (29) 

Define macroscopic stress H ( )ij tσ  by:  

 ( )H H 0 H
ij ijkl k l ijsG u x s Tσ ∂ ∂ β= −  (30) 

The inverse Laplace transformation yields: 

 

0( )H H
0

( ) H
0

( , )( ) ( )

( , )( )

t k
ij ijkl

l

t
ij

l

u xt G d
x

T x d
x

ξ

ξ

∂ ξσ ξ ξ τ
ξ ∂

∂ ξβ ξ ξ ξ
ξ ∂

′∂′= −
′∂

′∂′ ′− −
′∂

∫

∫
 (31) 

Eq. (31) represents the effective viscoelastic 
constitutive equation of composite materials, which 
includes the thermal stress relaxation. 

The stress and its Laplace transformation at 
any position in the domain of composite materials 
can be expressed as: 

 0 1( , ) ( , ) ( , y, )ij ij ijt t tσ σ εσ= + +x x x  (32) 

 0 1( , ) ( , ) ( , y, )ij ij ijs s sσ σ εσ= + +x x x  (33) 

where,  

 
(0) (1)

0 ( , ) m m
ij ijmn ijmn mn

n n

u us sG sG T
x y

∂ ∂σ α
∂ ∂

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
x  (34) 

 
( ) ( 1)

( ) ( , ) , 1, 2,
k k

k m m
ij ijmn

n n

u us sG k
y y

∂ ∂σ
∂ ∂

+⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
x  (35) 

Substitution of Eq. (22) into Eq. (34) yields 

 

0
0 ( )

kl
m k

ij ijkl ijmn
n l

m
ijmn mn

n

us s G G
y x

sG T
y

∂χ ∂σ
∂ ∂

∂ α
∂

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
⎛ ⎞Ψ+ −⎜ ⎟
⎝ ⎠

 (36) 

Taking the volumetric average of the equation 
above over the base cell, we obtain: 

 0 H(x, ) (x, )ij ijs sσ σ=  (37) 

which means that the macroscopic stress is the mean 
value of the first approximate stress over the base 
cell. 

In this section, the viscoelastic constitutive 
equation of composite materials is presented. A 
homogenization-based multi-scale method is 
developed for predicting the effective relaxation 
modulus and ETTRM, and solving viscoelastic 
problem of composite material structures. The main 
schemes of this method are summarized as follows: 

1) Obtain the generalized displace function 
(y)kl

iχ  by solving Eq. (28); 
2) Calculate the effective relaxation modulus 

and ETSRM by inversely transforming Eqs. (26) and 
(28); 

3) Solve Eq. (25) to get the macroscopic 
displace in the transformed space; 
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4) The stress which shows the local 
heterogeneous influence is obtained from the inverse 
transformation of Eq. (36) 

5) The macroscopic stress and the constitutive 
equation are obtained by Eq. (31). 

 
2.3 Thermal Expansion Property 

For the conventional materials, if T(t) is the 
history of temperature, the strain will be given by 

 
0

( )( )
t

ij ij
dTt d

d
τε α τ

τ−
= ∫  (38) 

ijα  represents the thermal expansion 
coefficient and is a constant under constant 
temperature. So the thermal strain completes 
instantaneously under the uniformly increasing 
temperature. 

Then the thermal strain of unidirectional 
composites can be expressed in a similar form under 
uniformly increasing temperature: 

 τ
τ
τταε d

d
dTtt

t

ijij ∫ −
−=

0

)()()(  (39) 

If the effective global stress equals to zero, the 
Laplace transform of the constitutive equation (30) 
is given by 

 
1T H H

kl ijkl klG Tε β
−

⎡ ⎤= ⎣ ⎦  (40) 

If H
ijˆ ( ( ))tα ξ  is defined by 

 
1H H H1ˆ ( )kl ijkl kls G

s
α β

−
⎡ ⎤= ⎣ ⎦  (41) 

Then the inverse Laplace transform is given by 

 
1H H H1ˆ ( ( )) Reij ijkl klt v G

s
α ξ β

−⎧ ⎫⎡ ⎤= ⎨ ⎬⎣ ⎦⎩ ⎭
 (42) 

))((Re sfv  represents the inverse Laplace 
transform for the function )(sf . Then the thermal 
strain related with temperature is given by 

 
0

( )ˆ( ) ( )
t H

ij ij
dTt t d

d
τε α τ τ

τ−
= −∫  (43) 

That equation illustrates the thermal strain of 
unidirectional composites can not complete 
instantaneously. If H

ijˆ (t)α  is defined as the effective 
thermal expansion coefficient of unidirectional 
composites, it is dependent on temperature, and is 

called as the effective thermal expansion coefficient 
at final temperature. 

 
3 Thermal Deformation Analysis of a Plate of 
Unidirectional Fiber Reinforced Composites 

3.1 Problem Description 

As an example, the viscoelastic thermal 
deformation of a unidirectional fiber reinforced 
composite plate is considered. The four edges of the 
plate are fixed as shown in Fig.1. The unidirectional 
fiber reinforced composites contain a kind of carbon 
fibers T300 embedded in a viscoelastic matrix. The 
matrix is a kind of resin called ED-6, and its volume 
deformation is elastic and shear deformation follows 
the three-parameter solid model as shown in Fig.2.  

 

 
Fig.1 Thermal expansion of a plate 

 
Fig.2 Three-parameter solid model 

 
The relationship of the stress and the strain in 

the direction of thickness is given by 

 
33H H

33 33330

H
33

( )
( ) ( ')

( ')
             ( ') ] 0

'

H
t G

dT
d

d

ξ ε ξ
σ ξ ξ

ξ
ξβ ξ ξ ξ

ξ

′∂
= −

′∂

′− − =

∫
 (44) 

For the Laplace transform, it is written as 

 ( )33 33 3333( ) ( ) ( ) ( )H H Hs s G s T sε β=  (45) 

The transform in the equation is for the reduced-time 
scale ξ . Based on the results under the constant 

expThermal ansion direction

1G
2G

η
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temperature, the parameters in Eq.(45) are given by 
following equations and Table 1. 

 

β

ββ

β
ps

q
s

q
s

ps
q

s
q

sG

H

G

GG
H

+
+=

+
+=

0
33

0
3333

)(~

)(~

 (46) 

Table 1.Parameters of the relaxation modulus under 
the reference temperature 
 q0(GPa) q(GPa) P(h-1) 

G33 71.1473 1.5109 0.0148 
β33 6.829×10-4 0.0509×10-4 0.013659

 
3.2 Laplace Transform of the History of 
Temperature 

It is difficult to get the Laplace transform of 
the history of temperature. For the simplification, 

( )T t  is approximated as 

 
1

1
1

( ) ( ) ( )
n

i i
i

T t T H t T H t t
−

=
= + Δ −∑  (47) 

Where, ( )H t is the Heaviside function. The 
approximated history of the temperature is shown in 
Fig.3. Then, the variation of the temperature with 
reduced-time scale is given by 

 [ ] 1 1 1
2

( ) ( ) ( ) ( )
i

k k k
k

T T H T T Hξ ξ ξ ξ− −
=

= + − −∑  (48) 

and the corresponding reduced-time scale becomes  

 

[ ]

[ ]

1

1 1 10

1 1 10
2

( ) ( )

( ) ( ) ( ) ( )

2,3, 1

i

t

it
i k k k

k

T d t T

T d t T t t T

i n

ξ χ τ τ χ

ξ χ τ τ χ χ−
=

= =

= = + −

= −

∫

∑∫  (49) 

The Laplace transform of the temperature and 
the strain can be expressed as 

 
11 1

11
2

1( ) , ( ) ( )

2 3  

i

i
s

k ki
k

T T
T T T T e

s s s
 i , , ,n  

ξξ ξ −−
−

=

⎡ ⎤ ⎡ ⎤= = + −⎣ ⎦ ⎣ ⎦

=

∑  (50) 

 1 2
33 1 2 3( ) c cH M M e M eξ ξε ξ − −= + ∗ + ∗  (51) 

Where,  
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3
1

2

2 2 3
1
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3 0
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2 0

( )( )
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G

G
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 (53) 

 

Fig.3 Uniformly increasing temperature 

 
Fig.4 Instantaneously increasing temperature 

 
3.3  Analysis of the results 

Firstly, the thermal strain of the plate induced 
by a jump of temperature at the beginning are 
calculated. Fig.5 shows the strain of the plate with 
the jump of 20℃. 

Then, the thermal strain of the plate induced by 
a uniformly increasing temperature at the beginning 
stage of time with a upper limit of temperature of 20
℃ (as shown in Fig. 3) are calculated. Fig. 6 and Fig. 
7 show the strain histories with increasing rates of 

T

0T

t

t

T

0

TΔ

tΔ

1T

1t 1−nt

nT
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temperature of 10℃ /h, 20℃ /h, and 40℃ /h. The 
variation of the strain with time at the last step of 
temperature change is shown in Fig.8. 

Through the above curves, we found that when 
the temperature increased to 20℃  uniformly, the 
increment of the strain is more than that under the 
instantaneously increasing to 20℃ .The increment 
for the former is 44456.1 −=Δ eε , while it is for 
the latter is 6593.2 −=Δ eε . 

 

 
Fig.5 Strain curve under instantaneously 

increasing temperature 

 
Fig.6 Strain curve under uniformly increasing 

temperature 

 
Fig.7 shows the thermal strain that under the 

various rate of temperature. The relaxation is quick 
as the rate of the temperature increasing, and the 
final values of the strain are the same as the curves 
tend to constant.  

When the temperature increased uniformly step 
by step, the relaxation rate is so high that the 
transient process is very quick. That is, the time 
effect of the relaxation is small, so the coefficient of 
the thermal expansion may be given by the transient 
thermal deformation. That is 

 ( ) ( ))(),( tTttT αα =  (54) 

Thus, the thermal strain is given by 

 ( ) ( ) τ
τ
τταε dTTttT

t

∂
∂= ∫

)()(),(
0

 (55)  

And the thermal stress is  

 
( ) ( )

( )

0

0

( )ˆ( ), ( ) ( )

( )( ) ( )

t TT t t G t T d

TG T d
ξ

τσ τ α τ τ
τ

ξξ ξ α ξ ξ
ξ

∂= −
∂

′∂′ ′ ′= −
′∂

∫

∫
 (56) 

Fig.7 Strain curve under various rate of  
temperature  

 

 
Fig.8 Strain curve under the last step of 

temperature 
 

4 Summary and Conclusion 

In this paper we have developed a novel 
multi-scale method for analyzing the viscoelastic 
property of unidirectional composite materials, and 
have investigated the character of the viscoelastic 
relaxation law under varying temperature. A 
homogenization-based method for predicting the 
effective viscoelastic relaxation modulus 
considering the temperature-dependency of 
properties was given. 
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The numerical results show that, when the 
temperature increased uniformly step by step, the 
relaxation rate is so high that the transient process is 
very quick. That is, the time effect of the relaxation 
is small, so the coefficient of the thermal expansion 
may be given by the transient thermal deformation. 
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