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SUMMARY: Lightweight structures made of composite materials are increasingly used in 
many industrial fields for high-technology applications due to their versatile property profile. 
Especially for dynamically loaded structures, a high material damping combined with low 
constructive weight and adequate stiffness is required. But in today's sophisticated appli-
cations, lightweight structures will also have to meet very high acoustic (low noise) stan-
dards. Therefore, an acoustic analysis has to be included in the design process. 
 
The structural-dynamic and acoustic behaviour of anisotropic multilayered composite struc-
tures can not be described by classical models. Here, advanced methods have been 
developed at the ILK, which take into account the special mechanical properties of the fibre-
matrix compound. In advanced structural-dynamic and acoustic experimental investigations 
using laser scanning vibration interferometer technology and sound power measurements 
within a specially constructed reverberation chamber, the structural-dynamic and acoustic 
property profile of different lightweight materials has been determined. For the principal 
analysis of the acoustic radiation of these materials, additional numerical simulations using 
the Finite Element Method (FEM) and the Boundary Element Method (BEM) have been 
performed. On the basis of these extensive investigations, a vibro-acoustic model was de-
veloped, which takes into account the characteristic structural-dynamic properties such as 
eigenforms and eigenfrequencies as well as the important structure-fluid coupling. 
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INTRODUCTION 
 
Monolithic  materials like magnesium, aluminium or titanium, which are mainly used in 
today's lightweight applications, often reach their limits with respect to the high demands 
concerning their structural-dynamic and especially acoustic behaviour. They offer high 
specific stiffness and strength, but a relatively low damping, which may lead to intense 
acoustic radiation. Here, composites or compound materials open the possibility to synergeti-
cally fulfill the requirements concerning stiffness and strength as well as damping and 
acoustic quality [1]. 
 
The structural-dynamic characteristics of especially anisotropic composite materials such as 
fibre-reinforced polymers can show a complicated coupling of bending and torsion 
dependent on the fibre orientation, the matrix composition and the lay-up. Thus, classical 
models can not describe the vibrations and the acoustic radiation of these structures. Here, 
advanced methods have been developed, which on the one hand offer the calculation of 
eigenfrequencies and eigenforms as well as material damping of modern lightweight 
structures [2]. On the other hand, the modelling of the acoustic radiation has been included. 
This vibro-acoustic design concept provides the possibility to calculate the eigenforms and 
the radiated sound power of plates, which are excited by an acoustic sound source inside a 
reverberant chamber, dependent on the special material properties. 
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STRUCTURAL-DYNAMIC ANALYSIS OF 
ANISOTROPIC COMPOSITE PLATES 

 
In general plates are plane load bearing structures, which have a thickness h significantly  
smaller than the length a and the width b (Fig. 1). 
 

 
 

Fig. 1: Plate geometry 
 
The plate of thickness h is here cut into halves by the midplane. As displacements in x-, y- 
and z-direction, the quantities u, v and w are used, with w being small in comparison to the 
thickness of the plate. Therefore, the structural-mechanic analysis can be done using a linear 
theory. 
 
The eigenfrequencies of multilayered anisotropic plate structures are calculated on the basis 
of the HAMILTONIAN principal as an extremum principle in elasto-dynamics. Assuming a 
harmonic vibration, the kinetic energy is then determined by 
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with the first-order time-derivative of the displacement vector fu  which describes a vibra-
tion consistent with the boundary conditions. The potential energy of the multilayered com-
posite can be derived from the deformation energy functional 
 

 
[

] ,
~

2
~~~~

2

~~
2

~
2

~
2
1

)(
45

2)(
55

2)(
44

2)(
66

)(
26

2

2
0 0

2)(
22

)(
16

)(
12

2)(
11

dydxdzQQQQQ

QQQQU

xzyz
k

xz
k

yz
k

xy
k

xyy
k

h

h

a b

y
k

xyx
k

yx
k

x
k

γγγγγγε

εγεεεε

+++++

+++= ∫ ∫ ∫
+

−  (2) 

 
which offers the possibility to include a shear-elastic displacement approach using shear 
deformation theory as well as the classical KIRCHHOFF plate theory [3]. 
 
For the case of steady-state conditions, the components of the displacement vector can be de-
scribed by harmonic functions. Here, the eigenforms are approximated by using the corre-
sponding solutions of the beam problem, which fulfill the boundary conditions [4]. Mini-
mising the energy functional leads to a system of homogeneous linear equations for the 
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determination of the coefficients of the RITZ approach, which can be written as a 
characteristic equation of an eigenvalue problem 
 

 ( ) .0=− ff aMK λ  (3) 
 
The calculation of the eigenvalues fλ , the eigenfrequencies ff  and the eigenvectors fa  is 

numerically done by using standard algorithms. 
 
For anisotropic multilayered composites, the analytical determination of the loss factor fd  is 

based on the concept of complex moduli, which results in complex parameters in the mate-
rial laws. According to the basic assumption that the complex moduli are transformed like 
their elastic correspondancies, a separation of the reduced complex stiffnesses is possible  
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Due to the small values of material damping of fibre-reinforced composites, the resulting 
complex characteristic equation of the eigenvalue problem can approximately be separated in 
its real and imaginary part using the RAYLEIGH quotient, which leads - after elimination of 

fλ′  - to the modal loss factor 
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where 
'

fa  denotes the real part of the complex eigenvector. 
 

EXPERIMENTAL INVESTIGATIONS 
 
The determination of the vibro-acoustic property profile of anisotropic composite structures 
involves experimental investigations, which have to include structural-dynamic and acoustic 
measurements. 
 
The structural-dynamic measurements were carried out using the Laser Scanning Vibration 
Interferometer (LASVI) technology, which is an advanced measuring system for the analysis 
of vibrating structures. Compared with conventional techniques using electromechanical 
sensors, the mass and eigenfrequencies of which have negative influence on the accuracy of 
the measurements, the LASVI method allows a contactless and highly exact determination of 
vibrational quantities and conditions. 
 
In order to determine the eigenmodes of the investigated plate structures, a scanning system 
was used, which allows measuring the velocity of different surface positions (net points) 
without mechanically moving the optical measuring head. Depending on the chosen resolu-
tion, the number of net points is variable. For the performed investigations, a resolution of 

3816×  with 608 measuring points was used according to the numerical calculations. 
 
The FFT analysis of the measured surface velocity is performed for every net point. The 
summation of the frequency-dependent data of each point is used to build the resonance dia -
gram of the vibrating plate, which is the basis for the identification of the eigenfrequencies. 
In Fig. 2a, the resonance spectrum of the surface velocity of a CFRP plate with a thickness of 
2.0 mm in the frequency interval from 150 Hz to 250 Hz is shown. 
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Fig. 2: Measured resonance diagrams 
 
The acoustic investigations were carried out within a reverberant chamber, which is a closed 
room built by acoustically rigid walls. The sound waves inside the reverberant chamber are 
reflected on all of the rigid walls, so that this multiple reflection and scattering leads to an 
ideal mixture of waves of different frequencies. The standing waves are superimposed and 
the locally varying maxima and minima of the sound pressure are approximately compen-
sated. This creates a sound field, which is characterised by an equal sound intensity at every 
position inside the reverberant chamber, a so called diffuse sound field. 
 
The diffuse sound field is then taken as the acoustic excitation of a test plate, which is 
clamped inside a rigid wall. This wall separates the reverberant chamber into two rooms, the 
so called transmitter and the receiver hall. Inside the transmitter hall, an acoustic sound 
source creates the diffuse sound field, whereas inside the receiver hall the radiation of the 
vibrating plate is the sound source (Fig. 3a). 
 

 
 

Fig. 3: Principal drawing of the reverberant chamber 
 
Due to the diffuse sound field in both of the halls, the energy of the sound waves is approxi-
mately preserved. Thus, a reverberant chamber can be used to determine the radiated sound 
power of acoustically excited structures inside the receiver hall. This sound power is an inte-
gral and spatially constant physical parameter and therefore a suitable acoustic design 
variable. 
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The acoustic sound source is a group of speakers, which are positioned in the transmitter hall. 
The test plate is fixed in a specially constructed clamping device, which guarantees 
reproducible boundary conditions. In the receiver hall, the radiated sound pressure is meas-
ured by a microphone, which rotates on a pivot mounting in a plane with an inclination of 
45°. On the basis of the measured sound pressure values, the radiated sound power level is 
then calculated according to DIN EN 23741 [5]. 
 
In order to analyse the quality of the diffuse sound field in the transmitter and the receiver 
hall, the reverberation time has to be measured. Within this reverberation time, the sound 
pressure level is reduced by 60 dB after the acoustic sound source is abruptly cut off. Due to 
the diffuse sound field, this frequency-dependent time period has to show approximately the 
same behaviour at any position inside the reverberant chamber (see Fig. 3b). 
 
The frequency analysis of the measured sound power is then done by FFT. For the CFRP 
plate, Fig. 2b presents the measured radia ted sound power. A comparison of the frequency-
dependent behaviour clearly reveals the mechanism of acoustic radiation, which can be seen 
by the coupling of the frequency distribution of sur face velocity and radiated sound power. 
The main focus of the performed numerical simula tions is on this important coupling 
between the structural-dynamic and acoustic parameters surface velocity and radiated sound 
power. 
 

NUMERICAL CALCULATIONS 
 
For a more detailed analysis of the vibro-acoustic coupling between the physical parameters 
surface velocity and radiated sound power, numerical calculations on the basis of the FEM 
and the BEM have been performed. These calculations were carried out in the workstation 
pool of the ILK. For the structural-dynamic analysis, mainly the program packages I-DEAS 
and ANSYS were used and the acoustic analysis was performed using the special BE Soft-
ware SYSNOISE and I-DEAS VIBRO-ACOUSTICS. 
 
The eigenforms calculated by the FEM and the measured eigenforms by LASVI show a very 
good agreement (Fig. 4). 
 

  
 

Fig. 4: Numerically and experimentally determined eigenforms 
 
This high accuracy of the structural-dynamic FE calculations is the main basis for the fol-
lowing vibro-acoustic analysis using the BEM. As input data for the BE analysis, the struc-
tural FE net is needed. This net is then converted into a BE net, which has the displacement 
field calculated within the harmonic response analysis as a boundary condition. The acoustic 
quantities on the radiating surface and on specially located points (field points) are computed. 
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These field points are positioned inside the air volume, which surrounds the vibrating plate 
[6]. 
 
For the analysis of the acoustic behaviour, the values of the sound pressure and the sound 
pressure dB level, the integrated sound power and the effective surface velocity are of im-
portance. In Fig. 5 the calculated sound pressure distribution on the basis of the given surface 
velocity field of a three-layer sandwich plate is shown. 
 

 
 
 Fig. 5: Calculated surface velocity and sound pressure distribution of a three-layer 
  sandwich plate 
 
In order to verify the coupling of surface velocity and radiated sound power, extended FE 
and BE calculations for different materials and different material damping values were per-
formed. As an example, Fig. 6 shows the frequency distribution of the averaged surface ve-
locity and the sound power level calculated by the FEM and the BEM for a titanium plate 
within the frequency interval from 0 Hz to 1000 Hz. 
 

 
 

Fig. 6: Frequency distribution of the averaged surface velocity and the sound power level 
 
According to the results of the LASVI measurements and the acoustic investigations within 
the reverberant chamber, the numerical calculations using the FE and BE techniques clearly 
reveal the coupling of the surface velocity and the radiated sound power. These two physical 
quantities have the same frequency behaviour, but different absolute dB values due to the 
different reference values. Therefore, the coupling of the structural vibration with the acous-
tic radiation results in the coupling of the physical parameters surface velocity and radiated 
sound power. This fundamental vibro-acoustic coupling is the basis for the following ana-
lytical model. 
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MODELLING OF THE SOUND RADIATION 
 
The vibro-acoustic behaviour of acoustically excited structures is characterised by the cou-
pling of the structural vibration with the surrounding air volume. This complex process of 
excitation, structural response and radiation can only be analysed if the vibration is described 
as a time-dependent solid-borne sound field. Here, bending vibrations of plates represent a 
relatively simple model for the creation and propagation of solid-borne sound. 
 
In the following, rectangular plates with small thickness and deflection as well as a homoge-
neous mass distribution are analysed. For the description of the plate dimensions, a cartesian 

zyx ,, coordinate system is used. The x  and y  coordinates open the plane, in which the 

edges xl  and yl  of the plate are situated, the thickness h  and the deflection ),,( tyxw  are 
chosen to be parallel to the z  coordinate (Fig. 7). 
 

  
 

Fig. 7: Plate under an exterior pressure field ),,( tyxp  
 
An exterior pressure field normal to the surface ),,( tyxp  like 
 

 tieyxptyxp ω),(),,( =  (6) 
 
is assumed to create a time-dependent bending wave, which can be written for the deflection 

),,( tyxw  in the form 
 

 .),(),,( tieyxwtyxw ω=  (7) 
 
This deflection field ),,( tyxw  is related to the surface velocity distribution normal to the 
plates' yx −  plane by 
 
 ).,,(),,( tyxwityxvw ω=  (8) 
 
In terms of the chosen energy formulation of this solid-borne sound field within an an-
isotropic plate, the surface velocity ),,( tyxvw  has to satisfy the following variational equa-
tion  
 
 0)),,(( =Π tyxvwδ  (9) 
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with Π  being the total energy in terms of 
 
 ).()()()( wwww vWvTvUv +−=Π  (10) 
 
Here )( wvU  denotes the deformation energy functional (see (2)), )( wvT  the kinetic energy 

(see (1)) and )( wvW  is the potential energy due the exterior pressure field ),,( tyxp  with 
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0 0
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Besides this variational formulation, also physically meaningful initial and boundary condi-
tions have to be defined in order to fully describe the surface velocity field in the plate. The 
solution of this elasto-dynamic field problem for a general excitation ),,( tyxp  can only be 
approximated by an appropriate set of functions defined on the whole domain of the elastic 
body. A reasonable solution can be found by substituting the general surface velocity field 

),( yxvw  by 
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with ),( yxv f  being the eigenfunctions of the problem and RR NM ⋅  as the order of the 

RITZ solution, which is used to determine the eigenfunctions of the problem. Substituting the 
approximation (12) in the variational equation (9) finally yields 
 

 ∑ ∫∫
⋅

= Λ−
=

RR
x yNM

f

l l

f
ff

f

s dydxyxpyxv
h

yxvi
yxv

1 0 0
22 ,),(),(
)(

),(
),(

ωωρ
ω

 (13) 

 
with fΛ  as the norm of the eigenfunctions fv  [7]. This expansion gives the possibility to 

calculate the structural-dynamic response for a general acoustic excitation ),( yxp  by using 
the eigenfrequencies and eigenforms of the structure. 
 
The described solution method for the structural-dynamic analysis of plates with isotropic 
material behaviour is implemented into a specially developed program system and is the 
basis for the analysis of the radiation process. The surface velocity field (13) causes the ra-
diation of sound waves into the air volume. In order to describe these sound waves, an ideali-
zed model is built. 
 
The rectangular plate is assumed to be embedded in a rigid wall of infinite extent, what 
creates two semi-infinite spaces. In the negative half-space, a constant sound pressure 0p  
due to a diffuse sound field exists. A radiation in this half-space is not calculated. The 
positive half-space is thought to be the air volume, in which the sound waves propagate. The 
sound waves are described by the physical parameters of the sound particle velocity normal 
to the rigid wall ),,,(/ tzyxv airz  and the sound pressure ),,,( tzyxp . 
 
The radiation of sound waves is caused by the coupling of the solid-borne sound field sv  
with the air in the positive half-space. An analytically continuous description of the sound 
particle velocity on the surface of the wall is therefore only possible in the form of a Fourier 
integral expansion 
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and the Fourier transform ),( yx kkv(  
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Inside the full positive half-space 0≥z , the sound particle velocity is assumed to propagate 
as a plane wave in the z -direction due to the plane sound source and the infinite air volume 
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The calculation of the sound pressure is then performed using the basic relation between the 
sound particle velocity and the sound pressure 
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as a plane wave of the form 
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With these analytical equations for ),,,(/ tzyxv airz  and ),,,( tzyxp , the radiated sound 
field is completely determined and the sound power, which is transmitted through a plane 

0zz =  in the positive half-space, can be calculated. Assuming a zero energy loss in the 
reverberant chamber, the radiated sound power inside the receiver hall can be calculated 
solving the integral 
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Inserting equations (16) and (19) transforms the integral into the Fourier integral and yields 
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This equation includes the Fourier transform ),( yx kkv(  of the solid-borne sound field, which 
is related to the surface velocity distribution (13) in the vibrating plate. Therefore, the 
developed analytical vibro-acoustic model shows the close coupling of the surface velocity 
with the radiated sound power. 
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Exemplarily, Fig. 8 presents the results, derived from this vibro-acoustic model and from the 
structural-dynamic and acoustic measurements. In Fig. 8a, the first resonance peak of the 
averaged surface velocity for a rectangular aluminium plate ( =xl  860 mm, =yl  560 mm, 

=h  1.97 mm) is shown, which on the one hand is calculated on the basis of the excited 
surface velocity distribution ),( yxvs  (13) by 
 

 ∫ ∫ ∗=
x yl l

ss

yx

s dydxyxvyxhv
ll

v
0 0

),(),(
1 ρ  (22) 

 
and on the other hand is directly measured by the LASVI technique. A comparison of the 
experimentally determined and analytically calculated (21) sound power is given in Fig. 8b. 
For both the average surface velocity and the radiated sound power a good agreement of the 
theoretical and experimental data has been achieved. 
 

 
 

Fig. 8: Comparison of calculated and measured structural-dynamic and acoustic quantities 
  (material: aluminium alloy, h = 1.97 mm) 
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