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SUMMARY: The stress transfer mechanism of short fiber reinforced metal matrix
composites was researched theoretically and numerically. The traditional shear-lag theory[1]
of stress transfer was initially modified. Some factors that could not be well considered in the
existed theories were involved in the revised theory. These factors included the normal stress
transfer at fiber end and the bond of interface. Some new formulas were gained. Then, in
order to discuss the reasonability of the revised formula, the results of these formulas were
compared with the stress distributions obtained by the numerical simulation of Finite Element
Method (FEM). It is shown that the revising for the traditional model is reasonable and
necessary.
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INTRODUCTION

The shear-lag theory was first developed by Cox[1] in 1952 and was used to describe the
stress transfer between the fiber and matrix in short fiber composites. The shear stress caused
by the unmatched elastic deformation between fiber and matrix at interface acted as the
means of stress transfer from the matrix to the fiber. With some assumptions and
simplifications, the distribution formulae of fiber axial stress 0y and interfacial shear stress T;
were gained by Cox[1]. Rosen[2] simplified the results of Cox further. However, the normal
stress at fiber end and the interfacial bond could not be well considered in their analysis.
Fukuda-Chou[3] took the fiber’s end stress into the stress transfer and developed the
advanced shear-lag theory. However, this theory was too complicated to be used easily. Thus,
the traditional shear-lag theory was revised by considering the normal stress at fiber end and
the interfacial bond in this work. In order to discuss the reasonability of the revised formulae,
the stress distributions obtained from the revised theory were compared with those calculated
by FEM.

AN EQUIVALENT SHEAR-LAG MODEL
In order to take the effects of normal stress at fiber end and interfacial bonding on the stress
transfer in short fiber reinforced metal matrix composites (SFRMMCS) into account easily,
an equivalent shear-lag model was suggested. In the equivalent model, the distribution of the
fiber axial stress and interfacial shear stress was deduced again by considering the
equilibrium of a small element of fiber as shown in Fig. 1. In this model, an interfacial layer
was inserted. The bonds between the interfacial with the fiber and the matrix were assumed
to be perfect. The state of interfacial bond was represented by the elastic modulus of the
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interfacial layer material. They were different with the Cox’s model[1]. However, when the
elastic modulus of interfacial layer was adopted to be equal to that of matrix material, this
model was simplified to be similar to the Cox’s model.
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Fig.1 Equivalent shear-lag model with an interfacial layer

With an applied stress of 0, the distribution formulae of the fiber axial stress 0y and the
interfacial shear stress T; are deduced here. The force equilibrium of an infinitesimal length,
dz, requires
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where 0y is the fiber stress in the axial direction, T; is the shear stress on the cylindrical
fiber-matrix interface, and 7;is the fiber radius. Now, the key-step of derivation is how to find
the formula of 7 which is a function of . The equilibrium of matrix between r,and r requires
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The shear strain of matrix at » is
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Integrating the Eq. 3 from ryto r,,, we get
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where v is the axial displacement of matrix at r,,, u is the axial displacement of matrix at r.. If
the interface is assumed to be perfect, # can be taken as the axial displacement of fiber.

Differentiating Eq. 4 yields
dr(r,) _
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The effect of fiber has become very weak at r, and can be neglected. In Eq. 5, g is the

applied load in the model. Differentiating Eq. 1 yields
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Substituting Eq. 5 into Eq. 6, we obtain
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Solving Eq. 7 yields
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where A4 and B are constants and are obtained from the boundary condition at fiber’s end. If
the boundary condition is ¢ f|Z=_1 =0 f|Z=1 =0, then
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where 1, = T(rf ) it is found that the results of Eq. 9 are equivalent to those obtained by Cox.

STRESS TRANSFER OF SFRMMCS
Effects of the Normal Stress at Fiber End
In SFRMMCS, especially when the interfacial bonding was perfect, the normal stress at fiber
end would have a significant effect on stress transfer between fiber and matrix, and could not
be neglected. Fukuda-Chou[3] had considered this factor in their theory. However the

formulae gained were too complex to be used. In order to take this factor into account, the
boundary condition in Eq. 8 should be taken as o f|Z:_1/ =g f|z=z, =0,,. The gy is the normal

stress at fiber’s end. Thus, Eq. 9 becomes to be
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where & and ) are the same as those in Eq. 9. the results of Eq. 10 are equivalent to those of

Cox when g =0.

Effects of the Interface

From the model as shown in Fig. 1, the effects of interface on stress transfer were discussed.
The interface between fiber and matrix was taken to be a layer of interfacial material. The
state of interfacial bond was characterized by the elastic modulus of interfacial layer. Here,
the Eq. 6 is still satisfied. Because the interfacial layer is very thin, the shear stress of
interfacial layer can be assumed to be uniform at different r(r,2r=ry). Thus, we get
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where G; is the shear modulus of interfacial layer, v; is the axial displacement of interfacial
layer near the matrix(at »;), and u; is the axial displacement of interfacial layer near the
fiber(at ;). The axial displacements of interfacial layer and matrix are assumed to be same at
1, and the axial displacements of interfacial layer and fiber are also assumed to be same at 7.
Considering the equilibrium of the matrix at »; and r(r=r;) yields

2T (r,) = Const. =210°T (r) (12)

The shear strain of matrix at #(r>r;) is
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Integrating the Eq. 13 from #; to »,,, we get
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Differentiating Eq. 11 and substituting Eq 14 into, the following formula is obtained
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Substituting it into Eq. 6 yields
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Solving Eq. 16 and taking the boundary conditionas O, [ =0, [ =0 yields
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If the boundary condition at fiber end is takenas O , , , =001, We get
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where 0y, is the normal stress at fiber end and is related to the modulus of interfacial layer.

DISCUSSION
Finite Element Method
In order to discuss the reasonability of the revised theory, the stress distributions of fiber
axial stress and interfacial shear stress were calculated by FEM in the same condition as that
used in theoretical analysis. The model was the same as that shown in Fig. 1, but mesh of
FEM was not shown here. The code was ALGOR Finite Element Analysis System and the
element is 8-nodes axi-symmetrical element. The number of total elements was 608 and the
number of total nodes was 660. The size of model was the same as that used in theoretical
analysis: 7,=10r, r-r~=0.05r, [=20r; [,=I+10r.The details were given in Reference[4]
Effects of the Normal Stress at Fiber’s End
When E~300GPa, E~E,=70GPa, v~=0.2, v=v,=0.33, and the applied stress g,=100MPa, the
distributions of fiber axial stress 0z and interfacial shear stress T;. obtained by theoretical
formulae and numerical simulation are shown in Fig. 2. It can be concluded that the stress
distribution curves gained from Eq. 10 (in which the gy is equal to 20y[5]) are closer to the
curves calculated by FEM than the results of Cox. This meant that, when the interfacial
bonding is perfect, the modified shear-lag theory, in which the normal stress at fiber’s end is
considered, is more reasonable than Cox’s shear-lag theory, especially near the fiber’s end.

4



From Fig. 2, it can also be concluded that the normal stress has no effect on the stresses in the
middle of the fiber.
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Fig. 2 The distributions of fiber axial stress 0 and interfacial shear stress T;.
(E;=E,, 0)=100MPa)

Effects of Interfacial Layer

When E=0.2GPa and other parameters were the same as those taken in former section, the
distributions fiber axial stress 0 and interfacial shear stress T, were calculated by theoretical
formulae and FEM. The results are given in Fig. 3. It can be concluded that from Fig. 3: (1)
Since the interface is assumed to be perfect and the weak interface cannot be taken into
account, the results of Cox have large differences with the stress distributions obtained by
FEM, especially in the middle of the fiber. (2) With the weak interfacial bond considered, the
results of the modified theory agree well with that calculated by FEM. Thus, the modifying to
the traditional shear-lag theory is necessary and reasonable.
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Fig. 3 The distribution of fiber axial stress 0 and interfacial shear stress T;.
(0=100MPa, E=0.2GPa)
In Fig. 3, the fiber’s normal stress at fiber’s end is not included in theoretical analysis. Thus,
there is some difference between the results of Eq. 17 and those of FEM, especially at fiber’s
end. As mentioned in former section of this paper, the fiber’s normal stress at fiber end 0y,
was related to the modulus of interfacial layer E;. Thus, the relation between 0y, and E; was
studied by FEM here. The result is shown in Fig. 4. It is concluded that the fiber’s normal
stress at fiber end Oy, increases with the increase in the modulus of interfacial layer E..
However, the rate of the increment of 0y, is not same for all of the moduli of interfacial layer
E(E<E,). When E; is small, with the elevation of E; the fiber’s normal stress at fiber end 0y,



increases rapidly. When E; is near the modulus of matrix E,, with the elevation of E; the gy,
increases very slowly and mostly does not change.

N}
193
S

f01 (MPa)
g

o
I
S

o
S

%3
S
T

Fiber's Normal Stress

=)

10 20 30 40 50 60 70
E (GPa)
1

=3

Fig. 4 The relative curve of the fiber’s normal stress at fiber end 0y, and the E; (0, =100MPa)
According to Fig. 4, when E~2GPa, the 0p; may be taken to be 160MPa. With this value of
Op;, the distribution curves of the fiber axial stress 0z and the interfacial shear stress 7.
gained from Eq. 18 and Eq. 17 are given in Fig. 5. It is indicated that the results of Eq. 18
agree very well with those gained by FEM.
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Fig. 5 The distributions of fiber axial stress 0 and interfacial shear stress T.
(0o=100MPa, E=2GPa)

CONCLUSION

Through comparing with the results gained from FEM, it is found that the modified shear-lag
theory is more reasonable than the traditional shear-lag theory. The revisions for the fiber’s
normal stress at fiber end and the interfacial bond are necessary to the analysis of the stress
transfer in short fiber reinforced metal matrix composites (SFRMMCs). The normal stress at
fiber end 0y, increases with the increment of the modulus of interfacial layer E;. However,
the rate of the increase of Ty, is not the same for all of the interfacial moduli E,(E,<E,,). The
normal stress at fiber end 0y, has no effect on the stresses in the middle of fiber.
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