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ABSTRACT 

The success of an automated vacuum forming process where flat prepreg laminates are formed into 
parts with complex curvature, is heavily influenced by the capacity of plies to deform during the 
forming procedure. Understanding the deformation behaviour in single and multi-layer prepreg 
arrangements gives insight into the likelihood of defect generation and the possible solutions which 
lead to defect free parts. The paper presents a theoretical model based on eigenvector and eigenvalue 
analysis to determine compatible modes of deformation within individual ply interfaces and complete 
stacking sequences. The model is validated using an experimental process where laminates are formed 
onto a doubly curved tool geometry using an industrial double diaphragm former. Stacking sequences 
with 90° interface angles outline the most formable solutions, whereas continuous 45° interfaces that 
spiral e.g. 45/0/-45/90 outline the most problematic forming conditions due to a locking behaviour. 
Optimising the interface angle within a stack for maximum compatibility is shown to completely 
remove defects at elevated temperature. Interface angles and stacking sequence are thus seen to be as 
significant as temperature and vacuum rate on the quality of formed parts.  
 
 
1 INTRODUCTION 

 
The reduction in manufacturing cost of structural composite parts within the aerospace sector has 

been established as a key area for advancement, if increased use of composite materials is to be 
feasible. Formability presents a vital aspect within the process of manufacturing composite 
components. This is particularly essential for the widely implemented automated manufacturing 
techniques, which improve rate of production. The associated risk however, is the generation of 
defects during the process of multi-layer forming. A common defect that can arise from plies being 
restricted from inter-ply and intra-ply shearing, is for laminates to produce out-of-plane wrinkles [1]. 
These wrinkles can cause severe performance knock downs and therefore need to be avoided during 
the manufacturing process [2]. In order to prevent the generation of wrinkles during automated 
vacuum forming processes such as Hot Drape forming (HDF) or Double Diaphragm forming (DDF), it 
becomes necessary to investigate which parameters could trigger or minimise the chances of wrinkles 
appearing.  

 
Previously, three factors have been investigated which influence the process of vacuum forming 

laminates. The first being temperature, the higher the temperature, the lower the resin viscosity and 
thus the easier it is to form the laminates into curvature [3]. The second parameter is the tool 
geometry. Tools with complex double curvature require much higher shear strain in the laminate, 
making ease of forming a function of tool geometry. Pressure presents the third forming parameter. 
The pressure involved in vacuum forming operations generally encompasses full atmospheric 
pressure. The slower the application of pressure, the more time is available for fibres to shift and slip 
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between each other. An approach to artificially increase the ply mobility has been to position veil 
materials in between plies, which mimic the effect of decreased resin viscosity while being able to 
perform the forming operating at a lower temperature [4]. Recently there has been one more forming 
parameter indicated; laminate stacking sequence. Initial studies carried out by Hallander [5] suggest 
that stacking sequence has an influence and can potentially be the cause of defect generation or defect 
avoidance. However, there have not been any attempts to outline how exactly the ply interaction 
within a stacking sequence could result in a more or less formable laminate.       
 

The aim of this paper is to outline the importance of interface angle in ply stacking sequences, on 
forming behavior of laminates. By establishing a theoretical foundation for ply deformation, both in 
single and multi-layer arrangements, analytical prediction can be provided on the ease of forming with 
regards to any given stacking sequence. The presented theory is supported by experimental work, 
where laminates are formed over a doubly curved tool geometry using an automated forming 
procedure.  
 
2 EIGENVECTOR COMPATIBILITY OF ANGLE PLY DEFORMATIONS 

This theory section sets out to use eigenvectors of lamina stiffness matrices to indicate which ply 
angles allow for compatible modes of deformation in pre-cure consolidation. Square brackets, [ ] 
denote matrices and vectors in the text that follows.  

2.1  Eigen decomposition representation of the lamina stiffness matrix 

The in-plane stiffness matrix [Q ] of a lamina of any angle  is always real symmetric, as such it can 
be subject to an eigen-decomposition; 

 [��] = [�][�][�]� (1) 

where [V ] is a matrix with normalized (unit length) eigenvectors, [v1], [v2], and [v3] of [�� ] as its 
columns (i.e. [v1], [v2], and [v3] form an orthonormal basis) and [D ] is a diagonal matrix with the 
eigenvalues, λQi for i = 1..3, of [�� ] on its leading diagonal. Eigenvalues in [D ] are derived from 
solution of the classical eigenvalue problem; 

 ��� − ����� = 0 (2) 

where [I] is the identity matrix.  

Classical Lamination Theory (with the Reuter matrix [R] correction for tensorial shear strain) gives the 
following equation for [Q ], 

[Q ] = [�]��[�][�][���][�]��  
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Where [Q] is the stiffness matrix for a 0° ply with, 

��� =  ���
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��� =  ���������(��� − ���
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��� =  ������(��� − ���
����)�� 

��� =  ���,    c = cos( ) and s = sin( )   (4) 

E11 represents the Young’s modulus in the fibre direction, E22   the Young’s modulus in the resin 
direction and ��� the major Poisson’s ratio.  

The diagonal matrix [D ] can be converted to a linear sum of three matrices each with only a single 
non-zero entry on the leading diagonal. Note that the structure of the three single eigenvalue matrices 
means that only terms from the eigenvector associated with that eigenvalue survive the matrix 
multiplication. It therefore is apparent that this equation can be written in an outer product form: 
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  (5) 

Or in short hand, 

 [�] = ��[��][��]� + ��[��][��]� + ��[��][��]� (6) 

It should be noted that [��]����� = 0 for i  j, i.e. the dot product of any two eigenvectors for a 
particular ply is 0 making them orthogonal and thus the modes of deformation they represent 
independent. The three eigenvectors in [v] for each ply are also dimensionless and normalized to have 
unit length. There are two choices for each eigenvector, the second of which is reached by multiplying 
the first by -1. However, to ensure that a physically consistent system of deformations is maintained, 
eigenvectors must be chosen such that the right-handed orthogonality of the three eigenvectors that 
represent a 0° ply is maintained for other ply orientations, i.e. after rotation, eigenvectors for plies 
other than 0° must maintain positive directions that are compatible with the original right-handed 
configuration of the eigenvectors of the 0° ply. Alternatively, the eigen-basis for a ° ply is based on a 
rotation but not reflection of the 0° ply eigen-basis (non-orthogonality of the transformation matrix 
notwithstanding). The stiffness related to deformation in each mode is given by the associated 
eigenvalue in [D] and thus terms in the Eqs.(5-6) have units of Pascals. Note that modes of 
deformation with smallest and greatest eigenvalues correspond to deformations of minimum and 
maximum energy respectively, i.e. modes that require soft resin deformation or stiff fibre deformation 
respectively. This can be seen by considering the application of Eq.(5) to the field of strain column 
vectors with unit length; the resulting load vector would be of minimum magnitude if the original 
strain vector was orthogonal to the eigenvectors associated with the two largest eigenvalues.  Note that 
the eigenvectors for the compliance matrix, [q], are identical to those of [Q] but have associated 
eigenvalues given by the reciprocal of those of [Q].  

 
2.2  Eigen-decomposition of plies with various angles 

In order to assess the formability of laminates with a given stacking sequence, it is necessary to 
assume that resin properties are linear elastic. Clearly, the resin is actually visco-elastic, but the results 
presented below provide a qualitative measure of formability. Assuming uncured material properties, 
E11 = 128 GPa, E22 = 0.100 MPa, G12 = 0.338 MPa and υ12 = 0.12 [6], we obtain the following 
eigenvectors and eigenvalues for a given uncured ply angle . In the results that follow, the sign 
convention defining tensile stress as positive and compressive stress as negative, is used to define the 
directions of eigenvectors [V ] and eigenvalues [D ] from a given [��]. The sign convention for 
eigenvectors can be verified by taking the triple product, given by the product of the three eigenvectors 
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[v1], [v2], and [v3] for a given fibre angle. When using the correct sign convention, eigenvectors follow 
the right-hand rule, which is outlined by a positive scalar triple product.   

 

Table 1: Eigenvalues �� and eigenvectors [��] within each deformation mode for a given ply angle . 

Assuming that a stack of uncured plies being formed over a tool will seek to find a minimum 
energy deformed state, it can be hypothesized that each ply will attempt to deform in its own minimum 
energy (resin deformation only) state. A visual representation of single 0˚ ply deformation in all three 
modes is presented in Fig 1.  

 

 

Fig 1: Distinct single ply deformation modes for 0° uncured ply 

However, as can be seen from the orthogonality of eigenvectors associated with minimum eigenvalues 
for the 0° and 90 plies in Table 1, individual ply deformations may be incompatible and thus 
deformation in higher eigenvalue (higher energy) modes may be required.   

For example, the eigenvectors associated with Resin Mode II in the 0° and 90 plies are identical 
(parallel) and thus compatible. If compatibility is not achieved for modes associated with low value 
eigenvalues then, as in-plane fibre deformation is energetically highly unfavourable, local out-of-plane 
deformation in the form of wrinkling may form part of the overall minimum energy mode for the 
deformed laminate (unless compatible deformations at other interfaces offset these high energy 
modes). 

The vector dot product of two column eigenvectors in adjacent layers k and k+1 given by given by 

 [�∝�]�
������

���
     

 

� = �, �;    � = �, �;    � = 0,90;    � = 45, −45;    � = 1, 2 ;    � = 1,2 
(7) 

 
 

where n and m indicate eigenvectors relating to the lowest and second lowest eigenvalue respectively. 

Note that as the eigenvectors are normalised it holds that −1 ≤ [�∝�]�
������

���
≤ 1 . 

 
An angular separation between vectors of 0 indicate parallel and thus compatible modes of 

deformation. Conversely, orthogonal and thus incompatible modes have a separation of 90° and thus a 
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dot product value of 0. Hence the vector dot product can be used to assess the compatibility of 
deformation of neighbouring plies. Whenever the Resin I or Resin II mode are in-line with the Fibre 
mode of the 2nd ply, deformation cannot happen. As a result, plies with 90° interfaces can only shear 
together, as both resin modes are constrained by the opposing angles fibre mode. Plies with a 0° 
interface are free to deform in their preferred resin mode, while 45° interfaces are forced to 
compromise. The most formable mode in 45° interfaces occurs when either 0 or 90 plies deform in 
Resin Mode II, while 45 or -45 degree plies deform in Resin mode I. Table 2 outlines the 4 possible 
deformation scenarios within an adjacent ply interface. A visual representation of the preferred (max 
value) deformation for a given fibre interface between two plies is outlined in Fig 2 below 

 

 
 

Table 2: Compatibility of deformation modes for a given interface 

 
 

Fig 2: Chosen deformation modes of 2 plies when paired together through a given fibre interface angle 

This analysis of interface angle using two adjacent plies can be extended to a full stack analysis. 
The interfaces continue to be treated on a simple ply-by-ply basis. In order to generate a value for 
multi-layer laminate compatibility, sums of vector products at each interface for a given deformation 
mode are taken for N number of plies. This is carried out for all four possible interface deformation 
scenarios, to determine the maximum possible laminate compatibility.   
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   Given an example stack of 45/0/-45/90, deformation can occur in one of 4 possible scenarios. 

Two options require all plies to either deform purely in resin mode I or purely in resin mode II. A third 
possibility is presented when all � plies deform in resin mode I, while the � plies within the stack 
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deform in resin mode II. The final option would be the reverse, where � plies act in resin mode II and 
� plies in resin mode I. Carrying out this full stack interface summation for the 4 given scenarios, 
results in obtaining the preferred deformation state. The scenario achieving the highest ���  will 
outline maximum stack compatibility and therefore the most formable deformation solution. When 
extending the multi-layer arrangements, caution needs to be taken with 45° interfaces. When a ply is 
met with two 45° interfaces of opposite direction, a locking behaviour occurs. Ply lockup can be 
detected when the compatibility value transitions from positive to negative or vice versa between two 
interfaces, e.g. 45/0/-45 ply sequence. This can be seen from Table 2 where the most compatible 
modes of 0/45 and 0/-45 outline the same magnitude of 0.82, but with different signs. In the full 
laminate compatibility analysis these values cancel each other out, thereby indicating locking and a 
resulting incompatibility. A visual representation of the ply locking behaviour is given in Fig 3; the 
central ply cannot deform in the preferred direction of one of the 45° plies without forcing a high 
energy deformation in the other 45° ply. 
 

 
 

Fig 3: Three ply lock up scenario when first and third ply are at an opposing 45˚ interface to the 
middle ply.  

This theoretical model will be used to predict the formability of a full stack, with respect to the 
interface angle and the positioning of plies within the stack. 

  
 

3 EXPERIMENTAL METHODOLOGY 

An industrial Double Diaphragm Former (DDF) provided the experimental basis for the automated 
forming process. The DDF raises the temperature of the laminate using heating bulbs, and creates a 
vacuum between the inner bag and forming bed to allow the outside atmospheric pressure to form the 
laminate around the given tool geometry. A sketch of the experimental set-up is shown in Fig 4. As the 
heating bulbs only provide heat from the top, having a temperature differential of up to 10°C within 
the stack, is not uncommon. Heater mats were therefore added to the inside of the tool, allowing for a 
consistent and uniform temperature distribution throughout the entire stack.  

 

          
 

Fig 4: Forming Setup within the DDF. a) Pre-Forming. B) Post-Forming 

Heating Bulbs 
 

Inner Bag 

Laminate 

Outer Bag 
Supports 

Tool Heater Mat  

a) 

Formed Laminate 
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Forming trials were conducted using 24 ply thick laminates, made of AS4/8552 UD prepreg 

material. Three Quasi-Isotropic (QI) layups with differing stacking sequences were investigated, as 
listed in Table 3. Each chosen stacking sequence outlines a system of distinct fibre interface angles, 
expected to show differential forming behaviour. 

 

Sample ID Layup 
Predominant Fibre 
Interface Angle 

QI1 [(±45)3(0/90)3]s 90° 

QI2 [(45/0/-45/90)3]s 45° (cont. spiralling) 

QI3 [(45/0)3(90/-45)3]s 45° (block alternating)  

 
Table 3 Investigated 24 ply QI laminates with varying stacking sequences. Note that 0° fibres are 

defined along the tool length. 
 

The experimental procedure comprised covering the flat 24 ply thick laminate with release film to 
create a separation layer between the prepreg material and the vacuum bag. The laminate underwent a 
continuous debulking cycle after being placed between the inner and outer bag, prior to evenly heating 
up to the desired temperature by the DDF and heater mats. Once the set temperature was reached in 
the laminate, draw of 0.7 bar/min until full vacuum was reached allowed the bags to stretch while 
conforming the laminate to the tool geometry. The formed laminate was allowed to cool while 
maintaining full vacuum until the stack reached a temperature below 30°C. Finally, the bags were cut 
to facilitate the removal of the tool and formed laminate.  

 
Due to the size of the available industrial DDF, it was decided to manufacture a single tool that 

would allow for two forming operations at the same time. This would provide a higher experimental 
efficiency, while ensuring that forming parameters of temperature and pressure were identical for 
every laminate pair that was formed.  

  
    The tool was designed to create a complex part geometry that would allow for sufficient defect 
generation. A CFRP tool material was used due to its low CTE and high rigidity at elevated curing 
temperatures. The male CFRP tool was moulded from a tooling block female pattern. The geometry 
was inspired by Hallander’s proven tool design [5], but rather than having a single recess feature on 
one flange, the recess was carried around the web and onto the other flange side, thereby creating a 
ramped spar geometry. This makes the laminate more prone to defect generation, as the material is 
forced to undergo larger deformations during forming. The tool design is presented below in Fig 5.   
 

 
 
Fig 5:  Tool geometry with a symmetric 1:20 ramp on both flanges and web face. The maximum and 

minimum Gaussian curvatures are given as 0.0127mm-2 and -0.0155mm-2.  

6.25mm 
130mm 
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The formed laminates were analysed both after DDF forming and after the final cure. A Coordinate 
Measuring Machine (CMM) was used to measure the thickness distribution throughout the entire 
laminate demonstrator. This allowed for detailed formability comparison between stacks of different 
stacking sequences and forming parameters. 
 
3 RESULTS 

3.1  Theoretical Results 

The vector dot product analysis defined in section 2 can be extended to a full laminate 
compatibility analysis on an interface-by-interface basis. Fig 6 indicates the compatibility of the four 
possible modes at every ply interface within the stacking sequences, as defined in Table 3. Assumed 
material properties are as given in section 2. The total laminate compatibility, as shown in Fig 7, is 
given through summation of the previously determined individual interface compatibilities for the 
most formable deformation case. 
 

 
 

 

 

 

Fig 6: Interface compatibility of all four deformation scenarios throughout the entire stack for given 
laminates QI1: (a) and (b); QI2: (c) and (d) and QI3: (e) and (f) 
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Fig 7: Total combined ply compatibility of the given laminate stack. High values predict improved 
laminate formability. 

 
3.2  Experimental Results 

An outline of the DDF formed laminates is presented below. Laminates undergo further 
consolidation after the forming process as part of the curing procedure, which is presented in Fig 8, 
using the example of the QI2 laminate.     

 
a) 

 

b) 

 

 

c) 

 

d)  

 

 
Fig 8: Forming results of QI2 at 40ºC. a) post forming, b) post forming laminate thickness variation, c) 

post cure, d) post cure laminate thickness variation. Thickness variations are given in mm. 
 
Wrinkles that have generated as a result of the forming operation, which was carried out at 40ºC, 

can be seen in Fig 9. The three given stacking sequences clearly outline differential forming 
behaviour, despite being formed under identical conditions.  

 
 

8.5

5.5
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a) 

 

b) 

 

c) 

  

 
Fig 9: Thickness variations post cure for laminates (a) QI1, (b) QI2 and (c) QI3. All three laminates have 

been formed at 40ºC. Thickness variations are given in mm.  
 
The effect of elevated temperature during forming on the most formable and least formable 

laminate can be seen below in Fig 10. Despite an optimal forming temperature of 80º C, the spiralling 
45º interface laminate still outlines a defect. On the other hand the formable 90º interface stack 
demonstrates fully defect free forming at already 60ºC. 

 
a) 

 

 

b) 

 
 

Fig 10: Laminate forming results of cured samples that have been formed at elevated temperatures for 
(a) QI1 at 60ºC and QI2 at 80ºC. 

 
4 DISCUSSION 

From Fig 6, the 24 ply QI1 laminate with 0,90,45 and -45 plies predominantly arranged with a 90° 
interface angle show the highest compatibility mode of 1.0 when adjacent plies deform in resin mode 
II, which correlates to plies shearing together. The only disruption to this pattern appears at 
intersections where 0/90 arrangements meet 45/-45 ply blocks. In this case e.g. at interfaces 6 and 18, 
compatibility drops from full to zero compatibility. Slip planes are believed to form in those 
incompatible interfaces where a formable block of 0/90 is met with another formable block of 45/-45 
plies. The other three deformation scenarios for QI1 outline either complete incompatibility or a 
negligible amount of compatibility,. For stack QI2 which has spiraling 45° interfaces, all plies are 
prevented from forming in their individually most compatible mode, as shown by the alternating 
nature of the compatibility plot in Fig 6 (d). Plies are therefore required to deform in a different mode. 
This is given where adjacent plies both deform in resin mode I, albeit at a much lower compatibility of 
0.41. The third given stacking sequence QI3 also predominantly comprises 45° ply interfaces, as with 
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the QI2 stack, but significantly separates ply groups, thereby avoiding the spiraling behaviour of QI2. 
As a result the laminate is not locked and therefore individual plies are free to deform in their most 
compatible mode, given where 0’s and 90’s deform in resin mode II, and 45’s and -45’s in resin mode 
I to give an individual compatibility of 0.82. Taking sums of the individual ply compatibilities within a 
stack provides the total stack compatibility as outlined in Fig 7. QI1 shows the highest stack 
compatibility index of 19, for all 24plies. Compared to QI1, QI2 outlines a 47.3% reduced total stack 
compatibility, as expected from the spiraling 45° interfaces. The final stack QI3 performs significantly 
better than QI2, but still shows a 13.7% lower total stack compatibility compared to QI1. Theoretically 
QI1 with 90° interfaces therefore presents the most formable solution for a 24 ply stack of UD prepreg 
in a quasi-isotropic arrangement. When evaluating the total compatibility index Cnm in vector form as 
opposed to a dot product addition of each interface, a prediction on directionality of stack deformation 
can be made. QI1 outlines a vector of [-5,-5,-9], showing that part of the plies within the stack shear in 
xy, while others stretch or compress in x and y. This behaviour however is not present in the other two 
laminates. QI2 has vector [4.92,5.1,0] and QI3 [0,0,-16.4]; both outline isolated deformations through 
either purely shearing in xy, or simply stretching and compressing in x and y directions. The lack of 
shear deformation in addition to the low total compatibility Cnm for the QI2 combine to produce a 
laminate with very problematic forming behavior in comparison to the QI1 laminate.  

 

The experimental results as demonstrated in Fig 9 reflect what has been suggested by the theory. 
While all three samples where formed under identical conditions at 40°C, QI2 clearly represents the 
most defective sample. The defects are not only widely spread on the web face of the part but also 
carry over the flange region of the part. Despite defects being present in both QI1 and QI3 web areas, 
they appear a lot less severe and fewer in number. The flange areas in both cases also outline no 
visible defect wrinkle. When comparing both QI1 and QI3, a slightly higher wrinkle severity does show 
up in QI3. Elevating the forming temperature to 80°C for the least formable laminate QI2 still does not 
produce a defect free part, due to the remaining wrinkle defect. However, the most formable laminate 
QI1 already outlines a perfectly defect free part at only 60°C.  
 

The correlation between the predicted theoretical formability for all three given stacking sequences 
and the experimentally formed samples equates to a high level of accuracy. The presented theoretical 
model therefore provides a simplistic and quick, but powerful tool to verify the formability of 
individual plies and chosen full stacking sequences.  
 
5 CONCLUSION 

The conducted research has demonstrated that the ply interface angle is a significant contributor to the 
formability of multi-layer composite laminates. For automated forming applications, stacking 
sequence should therefore be considered together with vacuum application rate and temperature, to 
produce the best possible result. The experimental results have shown that 90° ply interface within a 
stack produces the most favourable forming results. In contrast, spiralling 45° interfaces outline the 
lowest compatibility due to the resulting locking behaviour and therefore are most prone to defect 
generation, especially on doubly curved tool geometries. The experimental test program was 
accompanied by a successful theoretical model which predicted the experimental outcome, while 
taking the entire stacking sequence into account. The presented results on interface angle and the 
corresponding ease of manufacture does not only apply to forming procedures, but should also hold 
true for simple debulking conditions, such as found during an autoclave cycle.  
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