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Summary

The formulation and analysis for visco-elastic bending of sandwich beam with light core will be
described in the paper.

We will work with integral equations of Volterra 2nd type in using of special properties of
resolvent operators. Applications are focused on vertical displacement and stress as the
functions of time.

Besides the space- operations the time- operations are occured in the analysis. Then the both we
can separate each other and at first to handle with the time- operators as numbers.

1. Formulation
We consider, that the beam of symmetrical structure and light core with thickness 2s is
subjected to vertical loading q(x,t) described by relation

a(x.t) = g(x) @ (t)
where @ (t) is Heaviside function. Thickness of the beam is 2 h and the relations = h—r is
valid, where r denotes thickness of the external layer.

In case of light core the value of normal stress Oy is very small in comparison with

external layer, so that we can consider 0, = 0. The shear stress 7 is of main importance.
We can define

r = (01(X1t), 6; = (02(X't) — L@
These relations are satisfying the equilibrium in direction z.
Physical equations for viscoelastic core can be described in the form
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where besides the modules of elasticity the integral time operators C; , C, are occured. By

integration we obtain stepwise
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with integration functions @3, ¢, (¢4(x,t) = 0 can be considered).

For relatively thin external layers the transverse incompressibility can be considered
and then

u, = w(x,t)
According to expression of displacement components in core we define for external layers
following relations
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From which appears
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Deciding component of stress Oyin external layer is given by the relation Oy = ES Ey ,l.e.
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where S is again an integral operator.
Further is necessary to define stress component 7 satisfying the conditions on surface
and on cross-over of layers:

r = h;_LZ o+ %(zis)(zih)ESwyXXX

Equilibrium in z direction is then satisfied at the integral form.
Basic equations are the equilibrium condition 0y, + 7, = 0 in external layers
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and the condition of integral character along to beam height is
h
jT,X dz + q = 0, e
—h
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Boundary conditions for the hinged support on both sides are of the form @1 x = 0,

(ol,xxx:O' w=20, W,xx:0

A favourable formulation of the problem can be obtained on base of certain formal
differential operations by adopting a special function «(x,t) and
giving
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The first basic equation is satisfied identically and the second one is transformed to form
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The boundary conditions applicable to hinged support are then
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2. Solving of the problem
At solution of the problem we apply an expansion of the functions g(x) and @ (x,t) into

Fourier series with coefficients §,, , @,,. By substitution into the basic equation and after
some arrangements we obtain
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As an example the analysis of the beam in a middle (x = E ) will be given. After introducing

of non-dimensional quantities
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we get eg. for uniform loading with intensity g , ie
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The integral operators can be determined from rheological models (eg. Poynting- Thomson) for
core C1, C, and S for external layers. In this case the both vertical displacement w and stress oy
above are time (viscoelastic) depending.

For product of operators applies eg.
t t

SC = I S(t-a) Cla-7)da = _[ C(t-a)S(a-7)da
The calculation is simplified, when the exponential operators responding to mechanical
models are used. For multiplication of operators applies



E*(e) E*(B) = E*(“O){:;*(ﬂ) (kde E'(a)g = [ e 4(r)dr apod.)
from which follows the relation
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If we consider for the beam core Poynting-Thomsontv model (standard solid)
characterized by relations E, - E,/K; and G, - G,/K, respectively, we obtain
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and vice versa
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Further we define the integral operators S, S for external layers. If we choose a
model with the structural equation E — (E / K) we get
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with operator S* = E*(—?J and kernel ‘S*‘ = e :
Then it is valid
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Inverted operator is st= 1+ — E*[——] with responding relation
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By application of time operators to Heaviside function at time interval t considered we
get
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The parameters of integral operators can be determined from mechanical testing. In this
case the both vertical displacement and w and stress ox are time depending.

3. Mechanical testing

Mechanical tests have been performed on a symmetrical sandwich beam with bearing layers
from composite, reinforced by glass fibres and polyester matrix [2]. Further, the cube testing
samples were loaded by constant load in a set-up developed and manufactured in Klokner
Institute (Fig.1). Vertical displacements were measured by LVDTSs and strains by strain gauges.
Testing samples were loaded by 30 and 60 N and unloaded at least for 100 h. The tests show a
good agreement with calculated values (Fig.2).
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Fig.1 Experimental evaluating of creep for the symmetrical sandwich beam



Fig.2 Experimental set-up for evaluating of creep of the symmetrical sandwich beam
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