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Summary 
The formulation and analysis for visco-elastic bending of sandwich beam with light core will be 
described in the paper. 
We will work with integral equations of Volterra 2nd type in using of special properties of 
resolvent operators. Applications are focused on vertical displacement and stress as the 
functions of time.  
Besides the space- operations the time- operations are occured in the analysis. Then the both we 
can separate each other and at first to handle with the time- operators as numbers. 
 
1. Formulation  
We consider, that the beam of symmetrical structure and light core with thickness 2s is 
subjected to vertical loading q(x,t) described by relation 
  ( ) ( ) ( )txgtxq Φ=,                                                                                            
where  Φ (t) is Heaviside function.  Thickness of the beam is 2 h  and the relation s  =  h – r  is 
valid, where r  denotes thickness of the external layer.  

 In case of light core the value of normal stress xσ is very small in comparison with 

external layer, so that we can consider 0=xσ . The shear stress  τ  is of main importance. 
We can define 
 ( )tx,1ϕτ =  ,                                                            
These relations are satisfying the equilibrium in direction z.  
 Physical equations for viscoelastic core can be described in the form 
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where besides the modules of elasticity the integral time operators  C1 , C2  are occured. By 
integration we obtain stepwise 
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with integration functions  3ϕ  , 4ϕ   ( ( )tx,4ϕ =  0 can be considered). 
  For relatively thin external layers the transverse incompressibility can be considered 
and then  
 ( )txwuz ,=                                                                            
According to expression of displacement components in core we define for external layers 
following relations 
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From which appears 
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Deciding component of stress xσ in external layer is given by the relation  xx SE εσ =  , i.e. 
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where S is again an integral operator. 
 Further is necessary to define stress component τ satisfying the conditions on surface 
and on cross-over of layers:  
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Equilibrium in z direction is then satisfied at the integral form. 
 Basic equations are the equilibrium condition   0,, =+ zxx τσ   in external layers  
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and the condition of integral character along to beam height is 

    ∫
−

=+
h

h
x qdz 0,τ ,    ie. 

 0
6

2 ,

3

,10 =+− qwSErs xxxxxϕ    ,        where  
20

shs +
=  . 

 Boundary conditions for the hinged support on both sides are of the form 01 =x,ϕ  ,   

01 =xxx,ϕ  ,    w  =  0 ,     0=xxw,   
 A favourable formulation of the problem can be obtained on base of certain formal 
differential operations by adopting a special function ( )tx,ω  and 
giving 
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The first basic equation is satisfied identically and the second one is transformed to form  
 qL −=ω                           

where 

+= w3ϕ
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The boundary conditions applicable to hinged support are then 
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2. Solving of the problem  
At solution of the problem we apply an expansion of the functions ( )xg  and   ω ( )tx,     into 

Fourier series with coefficients  mmg ω, . By substitution into the basic equation and after 
some arrangements we obtain 
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As an example the analysis of the beam in a middle (
2
lx = ) will be given. After introducing 

of non-dimensional quantities 
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we get eg. for uniform loading with intensity g , ie.  
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The integral operators can be determined from rheological models (eg. Poynting- Thomson) for 
core C1, C2  and S for external layers. In this case the both vertical displacement w and stress σx  

above are time (viscoelastic) depending. 
 
For product of operators applies eg.                 
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 The calculation is simplified, when the exponential operators responding to mechanical 
models are used. For multiplication of operators applies   
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from which follows the relation  

 ( )ακ −+ ∗E1
1  =     ( )ακκ −−− ∗E1   

 If we consider for the beam core Poynting-Thomsonův model (standard solid) 
characterized by relations  1KEE xc /−   and 2/ KGG xc −  respectively, we obtain  
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and vice versa 
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 Further we define the integral operators S ,  S-1  for external layers. If we choose a 
model with the structural equation  ( )KEE /−  we get 
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 By application of time operators to Heaviside function at time interval t considered we 
get   
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 The parameters of integral operators can be determined from mechanical testing. In this 
case the both vertical displacement and w and stress σx are time depending. 
 
3. Mechanical testing 
Mechanical tests have been performed on a symmetrical sandwich beam with bearing layers 
from composite, reinforced by glass fibres and polyester matrix [2]. Further, the cube testing 
samples were loaded by constant load in a set-up developed and manufactured in Klokner 
Institute (Fig.1). Vertical displacements were measured by LVDTs and strains by strain gauges. 
Testing samples were loaded by 30 and 60 N and unloaded at least for 100 h.  The tests show a 
good agreement with calculated values (Fig.2). 
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Fig.1 Experimental evaluating of creep for the symmetrical sandwich beam 

 



 

Fig.2 Experimental set-up for evaluating of creep of the symmetrical sandwich beam 
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