
21st International Conference on Composite Materials 

Xi’an, 20-25th August 2017 

A CRITICAL ASSESSMENT ON THE PREDICTABILITY OF 12 

MICROMECHANICS MODELS FOR STIFFNESS AND STRENGTH OF 

UD COMPOSITES  
 

Zheng-Ming Huang1, Chun-Chun Zhang1 

 
1 School of Aerospace Engineering & Applied Mechanics, Key Laboratory of the Ministry of 

Education for Advanced Civil Engineering Materials. e-mail: huangzm@tongji.edu.cn 

Full Paper-A critical assessment on the predictability of 12 micromechanics models for stiffness and strength of UD composites.pdf

  

Keywords: Composite; Stiffness; Strength; Predictability; Micromenchanics; Stress concentration 

factors; Accuracy assessment 

  

ABSTRACT 

Any micromechanics model developed to predict the stiffness (elastic properties) of a composite is 

also applicable to the prediction of a composite strength, as long as the homogenized stresses in the 

matrix are converted into true values by virtue of its stress concentration factors (SCFs) obtained 

recently. In this paper, the predictability of 12 most well known micromechanics models for 

stiffnesses and strengths of unidirectional (UD) composites is assessed. The measured elastic and 

strength data of the 9 UD composites adopted in three world-wide failure exercises (WWFEs) are used 

as a benchmark in this assessment. It is shown that Bridging Model is among the most accurate in the 

prediction of both the stiffnesses and the strengths. 

 

1 INTRODUCTION 

Fiber reinforced composites, serving as the fourth class of structural materials in addition to metals, 

ceramics, and polymers, have been used in almost every branch of industry. Different from the latter 

three materials, the composites are anisotropic. Their mechanical properties are difficult or at least 

expensive to understand. Establishment of mathematical models to link the overall behaviors of the 

composites with their constituent structures and properties is an objective of micromechanics. It is 

expected that the effective properties of a composite can be predicted from its constituent information, 

and sample testing will be performed only at the final stage for validation of a “virtual” design. 

So far,Numerous micromechanics models have been developed to predict elastic properties of the 

composites only from those of the constituent fiber and matrix materials. But very few of them have 

been applied to estimate failure and strength behaviors of the composites just based on the original 

constituent data with a reasonable accuracy[1]. Here, the original constituent properties stand for those 

measured independently using the monolithic material specimens. Very recently, we have found the 

homogenized stresses in the matrix of a composite determined by a micromechanics theory must be 

converted into true valures before a failure assessment can be made if only the original property 

parameters are available [2-5]. The conversion is done by multiplying the homogenized quantities with 

the respective stress concentration factors (SCFs) of the matrix due to introduction of the fiber. Such 

an SCF cannot be defined following a classical approach, and the explicit formula of it has been 

derived elsewhere[2-5]. In this way, each micromechanics model is also applicable to the prediction of 

a composite failure and strength behaviour. 

Then, there may arise a question. Which micromechanics theory will result in a better prediction 

for a composite strength? One purpose of this paper is to compare the predicability of 12 most well 

known micromechanical models for the stiffness (elastic property) and mainly strength of a UD 

composite, only using information of the fiber and matrix properties and the fiber volume fraction. 

The previous comparisons, e.g. Refs. [6-8], were made only for the stiffness predictions by different 

models. Seldom have been done for the strength predictions. The models considered in this paper are 

Bridging Model[9], Mori-Tanaka method[10], rule of  mixture method, Chamis’ model[11], modified 
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rule of mixture method[12], Halpin-Tsai formulae[13], Hill-Hashin-Christensen-Lo model[14,15], 

self-consistent method[16], generalized self-consistent method[17], generalized method of 

cells(GMC)[18], finite volume method (FVM)[19], and finite element approach(FEA). The measured 

stiffness and strength data of all the 9 independent UD composites adopted in the hree WWFEs are 

used as benchmark to judge the accuracy of each model’s predictions. An accuracy ranking is made 

based on the overall correlation errors of all he models’ predictions with the experiments. It has been 

shown among the 12 models considered, Bridging Model exhibits overall the best accuracy both in 

stiffness and in strength predictions for the composites. 

Another purpose of this paper is to explore what accuracy can be achievable in strength prediction 

by a current micromechanis model. To predict a composite stiffness, only elastic properties of the fiber 

and matrix together with the fiber volume fraction are required. In order to estimate a composite 

strength, one must know additionally ultimate strengths of the constituents. Moreover, the influence of 

other factors, if any, such as thermal residual stress, matrix plasticity, interface debonding, void 

content, etc. on the prediction of a strength is much more significant than on that of a stiffness. Any 

deviation in determining each of the constituent properties and the other factors will cause a 

correlation error between a predicted and measured composite data. In view of these, it is natural that 

the overall prediction accuracy for a strength be one half less than that for a stiffness of the same 

composite. We will show in the paper that such an accuracy is indeed achievable. 

 

2 EVALUATION OF INTERNAL STRESSES  

A composite is heterogeneous by nature. Stresses and strains should be defined upon averaged 

quantities with respect to its RVE (representative volume element) V’ through  
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where a stress or strain with  on head represents a point-wise quantity. Equations (1) represent a 

homogenization on the composite. Even though point-wise stresses and strains, i~  and i~ , are 

obtainable by, e.g., an FEA, the homogenization of Eqs. (1) must be carried out before the effective 

properties of the composite can be determined. When only fiber and matrix are contained in V’, he 

above integrations read 
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where V is a volume fraction with Vf+Vm=1. A super-/sub-script f or m refers to fiber or matrix, 

whereas a quantity without any suffix is related to the composite.   

Suppose that there is a bridging tensor, [Aij], such that   
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From Eq. (2.2) together with constitutive relationships of the fiber, matrix, and the composite, the 

compliance tensor of the composite is given by[22] 
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On the other hand, any homogenization based micromechanics model corresponds to a bridging 

tensor, which can be used to determine the internal stresses of the fiber and matrix through Eqs. (4) 

and (5). In fact, from Eq. (6), the bridging tensor is given by 
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Thus,determination of the internal stresses in the fiber and matrix of a composite is equivalent to 

that of the elastic properties of the same composite. The accuracy of a micromechanics model in 

evaluating the internal stresses can be assessed by comparing the model’s prediction and the 

measurement on elastic properties of the composite.   

 

3 ASSESSMENT ON STIFFNESS PREDICTIONS 

Hinton et al. organized the three WWFEs to judge efficiency of the current strength theories for 

composites. A total number of 9 independent material systems were used. Mechanical properties of the 

fibers and matrix , fiber volume fractions and ultimate strengths of the 9 UD composites were 

provided[20-22], and are shown in Table 1. Measured effective properties and strength of the 

composites by the exercise organizers[20-22], used as a benchmark to assess the predictability of 

the12 models summarized before, are listed in Table 2. Predictions for the effective five elastic moduli 

of each of the 9 UD composites by the 12 models are made. The overall averaged errors by the 12 

models and a ranking for the stiffness prediction accuracy are presented in Table 3. It is seen that the 

Bridging Model’s prediction for the stiffnesses of the 9 composites is the most accurate, with an 

overall correlation error of 10.38%. The second highest accuracy is achieved by the finite volume 

method, with an overall correlation error of 12.83%, which shows an accuracy lost of 24% in 

comparison with the Bridging Model’s prediction. 

 

4 HIGHLIGHT ON UN IAXIAL STRENGTH PREDICTION 

The compliance tensor of a composite by a micromechanics model is given by 
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Substituting Eqs. (8) into Eq. (7), the bridging tensor for the composite is obtained. Under a 

uniaxial load condition, only a longitudinal strength is controlled by a fiber failure, whereas all of the 

other failures are resulted from matrix’s failures. Thus, we only need to determine the following 

relationships 
0

11111  f

, 
0

22222  m

, 
0

23323  m

, 
0

12412  m

.                               (9) 

Where i’s are dependent on the bridging tensor and 
0

11 , 
0

22 , 
0

23 , and 
0

12  are external loads 

applied individually to the composite once at a time. 

 It is noted that the stresses by Eqs. (9) are homogenized quantities. They should be converted into 

“true” values before used in assessing a fiber or matrix failure if the original strength data of the fiber 

or matrix are used. The stresses in the fiber are uniform[17], implying that its homogenized and true 

stresses are the same. The stresses in the matrix, however, are not uniform. Each of them should be 

multiplied with a stress concentration factor (SCF) of the matrix owing to the introduction of the fiber. 

A matrix plate with a hole generates a stress concentration in its neighborhood if the plate is subjected 

to an external load. Similarly, when the hole is filled with a fiber of different properties the matrix 

sustains a stress concentration as well. 

 

5 SUMMARY ON SCFS  

The most importantly, an SCF of the matrix in a composite cannot be defined as a point-wise stress 

divided by an overall applied one[2], as done in a classical approach. Otherwise, the resulting SCFs 

would be infinite at voids and micro-cracks which occur in a composite by nature. At those defects, 

point-wise stresses of the matrix are singular. As a classical SCF is defined as a point-wise (something 

like zero-dimensional) stress divided by the overall applied quantity, which is in fact a 

surface-averaged (two-dimensional) stress, the new definition for an SCF of the matrix must be made 

by a line-averaged (one-dimensional) stress divided by a volume-averaged (three- dimensional) one. 
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5.1 SCFS under transverse loads  

Under a transverse load (Fig. 1), a matrix SCF is defined as[5] 
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where 
m
22~  is a point-wise stress of the matrix in the loading direction determined on a CCA 

model,
R


 is a a vector along a line which has an inclined angle  with the loading direction, as 

shown in Fig. 1(a), 
aR 


 and 

bR 


 are the vectors of R


 at the surfaces of the fiber and matrix 

cylinders, respectively. It is noted that the fiber and matrix domains in Eq. (10) must be within a 

representative volume element (RVE) of the composite, i.e.,  
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                      (a)                           (b) 

Fig. 1. Schematic of a RVE used in defining SCF of matrix in a composite subjected to (a) a 

transverse tension, (b) a transverse compression  

  

Vf is the fiber volume fraction. If one recalls that the classical definition for the SCF of a plate 

containing a hole was made on the stress field determined from an infinite domain assumption, one 

can appreciate the pertinence of Eq. (10) together with Eq. (11). In the latter case, the line-averaged 

stress in the numerator of Eq. (10) becomes a point-wise quantity if ba. Meanwhile, the volume 

averaged stress in the denominator should be replaced by the surface averaged one, i.e., by 
0
22 . In 

this way, the SCF obtained from Eq. (10) by setting =900 equals 3, exactly the same as the classical 

one. 

In Eq. (10), BM
m )( 22  is the transverse stress in the matrix calculated by the Bridging Model 

through  
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where Vm=1-Vf. Explicit integration of Eq. (10) reads[5] 
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In Eq. (13.1),  is the inclined angle between the outward normal to the failure surface and the loading 

direction. Under a transverse tension, one has =0 (Fig. 1(a)). However, under a transverse 

compression, = (Fig. 1(b)) determined by virtue of Mohr’s theory as[5]  
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Thus, the transverse tensile and compressive SCFs of the matrix in the composite, 
tK22  and 

cK22 , 

are resulted from Eqs. (13) as 

                    
tK22 =K22(0), 

cK22 =K22().                                   (15) 

The transverse shear SCF of the matrix is obtained also through Mohr’s theory as[5] 
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In Eqs. (14) and (16), 
m
tu, , 

m
cu, , and 

m
su,  are the original tensile, compressive, and shear 

strengths of the monolithic matrix, respectively. 

 

5.2 SCF under longitudinal shear 

Under a longitudinal shear, the failure surface of a UD composite is shown in Fig. 2[23,24]. 

Following Eq. (10), a longitudinal shear SCF of the matrix is given by (Fig. 3) 
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where 
m
12~  and BM

m )( 12  are obtained on a CCA model[17] and by the Bridging Model, respectively, 

as 
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Fig. 2. Failures of the matrix in a UD composite under a longitudinal shear[23,24] 
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Fig. 3. Schematic definition for the SCF of matrix under a longitudinal shear 

 

Substituting Eqs. (18) and (19) into Eq. (17) gives rise to 
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Under a transverse load, the matrix transverse stress component in a CCA model is uniform along 

the thickness (where in the x1-axial) direction, see Ref. [17]. On the other hand, the longitudinal shear 

load results in non-uniform shear stress in the thickness (here in the x3-axial) direction, as seen from 

Eq. (18) and Fig. 3. Thus, an average on Eq. (20) along the thickness direction is necessary, resulting 

in  
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5.3 Longitudinal normal SCF 

When a longitudinal normal load is applied to a CCA model, the resulting stresses in the matrix are 

uniform[17]. Thus,no stress concentration occurs in the matrix under a longitudinal load. In other 

words, the longitudinal normal SCF of the matrix in a composite equals one. 

 

6 ASSESSMENT ON STRENGTH PREDICTIONS 

From Eqs. (9), the longitudinal tensile, longitudinal compressive, transverse tensile, transverse 

compressive, transverse shear, and longitudinal shear strengths of a UD composite are estimated per 

any micromechanics model, respectively, as 
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It is possible that the volume-averaged stresses in the denominators of Eq. (10) and (17) be replaced, 

respectively, by 
m
22  and 

m
12  calculated through Eqs. (9). According to the two different methods 

in defining the denominator stresses, one through the Bridging Model and another through Eqs. (9), 

the resulting SCFs are called the first class (shorted to the 1st-SCFs) and the second class (shorted to 

the 2nd-SCFs) SCFs, respectively. It can be easily shown that the 2nd-SCFs are given by 
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t
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tII KK 22
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22
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


 , 23

2

2
23 KK

BM
II




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4

4
12 KK

BM
II




 ,           (23.1) 

    
)( 22
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2

aVV

a
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BM


 , 

)( 66

66
4

aVV

a

mf

BM


 .                                  (23.2) 

Three kinds of predictions for the uniaxial strengths of all the 9 UD composites have been made in 

terms of the 12 models. The first and the second predictions are carried out with the 1st-SCFs and the 

2nd-SCFs incorporated, whereas the third predictions are made with no SCFs taken into account (i.e., 

setting 
tK22 =

cK22 =K23= K121 in Eqs. (22). It is noted that the first and second kinds of predictions by 

Bridging Model are the same. Three kinds of predictions’ averaged errors by the 12 models and a 

ranking for the strength prediction accuracy are presented in Table 4. 

 

 E-Glass 

LY556 
E-Glass 

MY750 
AS4 

3501-6 
T300 

BSL914C 

IM7 

8551-7 
T300 

PR319 
AS carbon 

Epoxy 
S2-Glass 

Epoxy 
G40-800 

5260 
fE11(GPa) 80 74 225 230 276 230 231 87 290 

fE 22 (GPa) 
80 74 15 15 19 15 15 87 19 

f
12  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

fG12 (GPa) 33.33 30.8 15 15 27 15 15 36.3 27 

f
23  0.2 0.2 0.07 0.07 0.36 0.07 0.07 0.2 0.357 

mE11(GPa) 3.35 3.35 4.2 4.0 4.08 0.95 3.2 3.2 3.45 

mE 22 (GPa) 
3.35 3.35 4.2 4.0 4.08 0.95 3.2 3.2 3.45 

m
12  0.35 0.35 0.34 0.35 0.38 0.35 0.35 0.35 0.35 

mG12 (GPa) 1.24 1.24 1.567 1.481 1.478 0.352 1.185 1.185 1.28 

m
23  0.35 0.35 0.34 0.35 0.38 0.35 0.35 0.35 0.35 

f
tu, (MPa) 2150 2150 3350 2500 5180 2500 3500 2850 5860 

f
cu, (MPa) 1450 1450 2500 2000 3200 2000 3000 2450 3200 

m
tu, (MPa) 80 80 69 75 99 70 85 73 70 

m
cu, (MPa) 120 120 250 150 130 130 120 120 130 

m
su, (MPa) 54 54 50 70 57 41 50 52 57 

fv  0.62 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

 
Table 1 

 

Measured 

11E (GPa) 53.5 45.6 126 138 165 129 140 52 173 

22E (GPa) 17.7 16.2 11 11 8.4 5.6 10 19 10 

12  0.278 0.278 0.28 0.28 0.34 0.318 0.3 0.3 0.33 

12G (GPa) 5.83 5.83 6.6 5.5 5.6 1.33 6 6.7 6.94 

23G (GPa) 6.32 5.79 3.93 3.93 2.8 1.86 3.35 6.7 3.56 

t,
11


 (MPa) 1140 1280 1950 1500 2560 1378 1990 1700 2750 

c,
11


 (MPa) 570 800 1480 900 1590 950 1500 1150 1700 
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t,
22


 (MPa) 35 40 48 27 73 40 38 63 75 

c,
22


 (MPa) 114 145 200 200 185 125 150 180 210 


 23 (MPa) 50 50 55 - 57 45 50 40 57 


 12 (MPa) 72 73 79 80 90 97 70 72 90 

 
Table 2 

 

Model N Average 

error 

Error 

ratio 

Rank 

ing 

Model N Average 

error 

Error 

ratio 

Rank 

ing 

Bridging model 45 10.38% 1.0 1 Halpin-Tsai formula 45 19.24% 1.85 7 

FAM 45 12.83% 1.24 2 Modified rule of 

mixture model 

45 19.35% 1.86 8 

FEM 45 13.08% 1.26 3 Mori-Tanaka model 45 19.59% 1.89 9 

Chamis model 45 14.09% 1.36 4 generalized 

self-consistent model 

45 19.66% 1.89 10 

GMC 45 15.07% 1.45 5 Self-consistent model 45 21.86% 2.11 11 

Hill-Hashin- C-L 

model 

33 17.22% 1.66 6 Rule of mixtur model 45 28.4% 2.74 12 

 
Table 3 

 

Model N Average 

error 

Error 

ratio 

Rank 

ing 

Model N Average 

error 

Error 

ratio 

Rank 

ing 

Bridging model 53 21.1% 1.0 1 Halpin-Tsai formula 53 30.1% 1.43 6 

FAM 53 23.0% 1.09 2 Generalized 

self-consistent model 

53 30.2% 1.43 8 

FEM 53 23.1% 1.09 3 Mori-Tanaka model 53 30.2% 1.43 8 

Chamis model 53 25.4% 1.20 4 Modified rule of 

mixture model 

53 30.7% 1.45 10 

GMC 53 25.4% 1.20 4 Self-consistent 

model 

53 32.7% 1.54 11 

Hill-Hashin- C-L 

model 

18 30.1% 1.43 6 Rule of mixture 

model 

53 44.5% 2.11 12 

 

Table 4.a with the 1st-SCFs 

 
Model N Averag

e error 

Error 

ratio 

Rank 

ing 

Model N Averag

e error 

Error 

ratio 

Rank 

ing 

Hill-Hashin- C-L 

model 

18 19.8% 1.0 1 Modified rule of 

mixture model 

53 27.3% 1.387 7 

Bridging model 53 21.1% 1.07 2 GMC 53 28.9% 1.46 8 

Halpin-Tsai formula 53 26.4% 1.33 3 FAM 53 29.7% 1.50 9 

Generalized self-con 

sistent model 

53 26.4% 1.33 3 FEM 53 29.7% 1.50 9 

Mori-Tanaka model 53 26.4% 1.33 3 Chamis model 53 31.6% 1.60 11 

Self-consistent model 53 26.9% 1.36 6 Rule of mixtur model 53 31.8% 1.61 1

2 

 
Table 4.b with the 2st-SCFs 

 

Model N Averag Error Rank Model N Averag Error Rank 



21st International Conference on Composite Materials 

Xi’an, 20-25th August 2017 

e error ratio ing e error ratio ing 

Rule of mixture 

model 

35 30.4% 1.0 1 Hill-Hashin- C-L 

model 

12 65.7% 2.16 7 

Modified rule of 

mixture model 

35 43.5% 1.43 2 GMC 35 68.7% 2.26 8 

Mori-Tanaka model 35 46.4% 1.53 3 FAM 35 77.1% 2.54 9 

Halpin-Tsai formula 35 46.4% 1.53 3 FEM 35 77.2% 2.54 10 

Generalized self-co 

nsistent model 

35 46.4% 1.53 3 Bridging model 35 115.2% 3.79 11 

Chamis model 35 61.9% 2.04 6 Self-consistent model 35 128.6% 4.23 12 

 

Table 4.c with no SCFs 

 

7 CONCLUSIONS 

  The following conclusions can be drawn from this study. 
1. Compared with other models, bridging Model shows the best accuracy in stiffness predictions 

for UD composites. 

2. Incorporated with the SCFs, the prediction accuracy for a composite strength is improved 

significantly, the Bridging Model’s prediction for the strengths of the 9 composites is more 

accurate than the others’. 

3. Without considering any SCF, all of the models show overall poor accuracy in the prediction of 

composite strengths. 
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