21% International Conference on Composite Materials
Xi’an, 20-25" August 2017

A CRITICAL ASSESSMENT ON THE PREDICTABILITY OF 12
MICROMECHANICS MODELS FOR STIFFNESS AND STRENGTH OF
UD COMPOSITES

Zheng-Ming Huang?, Chun-Chun Zhang*

1 School of Aerospace Engineering & Applied Mechanics, Key Laboratory of the Ministry of
Education for Advanced Civil Engineering Materials. e-mail: huangzm@tongji.edu.cn

|

Full Paper-A critical assessment on the predictability of 12 micromechanics models for stiffness and stre

Keywords: Composite; Stiffness; Strength; Predictability; Micromenchanics; Stress concentration
factors; Accuracy assessment

ABSTRACT

Any micromechanics model developed to predict the stiffness (elastic properties) of a composite is
also applicable to the prediction of a composite strength, as long as the homogenized stresses in the
matrix are converted into true values by virtue of its stress concentration factors (SCFs) obtained
recently. In this paper, the predictability of 12 most well known micromechanics models for
stiffnesses and strengths of unidirectional (UD) composites is assessed. The measured elastic and
strength data of the 9 UD composites adopted in three world-wide failure exercises (WWFES) are used
as a benchmark in this assessment. It is shown that Bridging Model is among the most accurate in the
prediction of both the stiffnesses and the strengths.

1 INTRODUCTION

Fiber reinforced composites, serving as the fourth class of structural materials in addition to metals,
ceramics, and polymers, have been used in almost every branch of industry. Different from the latter
three materials, the composites are anisotropic. Their mechanical properties are difficult or at least
expensive to understand. Establishment of mathematical models to link the overall behaviors of the
composites with their constituent structures and properties is an objective of micromechanics. It is
expected that the effective properties of a composite can be predicted from its constituent information,
and sample testing will be performed only at the final stage for validation of a “virtual” design.

So far,Numerous micromechanics models have been developed to predict elastic properties of the
composites only from those of the constituent fiber and matrix materials. But very few of them have
been applied to estimate failure and strength behaviors of the composites just based on the original
constituent data with a reasonable accuracy[1]. Here, the original constituent properties stand for those
measured independently using the monolithic material specimens. Very recently, we have found the
homogenized stresses in the matrix of a composite determined by a micromechanics theory must be
converted into true valures before a failure assessment can be made if only the original property
parameters are available [2-5]. The conversion is done by multiplying the homogenized quantities with
the respective stress concentration factors (SCFs) of the matrix due to introduction of the fiber. Such
an SCF cannot be defined following a classical approach, and the explicit formula of it has been
derived elsewhere[2-5]. In this way, each micromechanics model is also applicable to the prediction of
a composite failure and strength behaviour.

Then, there may arise a question. Which micromechanics theory will result in a better prediction
for a composite strength? One purpose of this paper is to compare the predicability of 12 most well
known micromechanical models for the stiffness (elastic property) and mainly strength of a UD
composite, only using information of the fiber and matrix properties and the fiber volume fraction.
The previous comparisons, e.g. Refs. [6-8], were made only for the stiffness predictions by different
models. Seldom have been done for the strength predictions. The models considered in this paper are
Bridging Model[9], Mori-Tanaka method[10], rule of mixture method, Chamis’ model[11], modified
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rule of mixture method[12], Halpin-Tsai formulae[13], Hill-Hashin-Christensen-Lo model[14,15],
self-consistent method[16], generalized self-consistent method[17], generalized method of
cells(GMC)[18], finite volume method (FVM)[19], and finite element approach(FEA). The measured
stiffness and strength data of all the 9 independent UD composites adopted in the hree WWFEs are
used as benchmark to judge the accuracy of each model’s predictions. An accuracy ranking is made
based on the overall correlation errors of all he models’ predictions with the experiments. It has been
shown among the 12 models considered, Bridging Model exhibits overall the best accuracy both in
stiffness and in strength predictions for the composites.

Another purpose of this paper is to explore what accuracy can be achievable in strength prediction
by a current micromechanis model. To predict a composite stiffness, only elastic properties of the fiber
and matrix together with the fiber volume fraction are required. In order to estimate a composite
strength, one must know additionally ultimate strengths of the constituents. Moreover, the influence of
other factors, if any, such as thermal residual stress, matrix plasticity, interface debonding, void
content, etc. on the prediction of a strength is much more significant than on that of a stiffness. Any
deviation in determining each of the constituent properties and the other factors will cause a
correlation error between a predicted and measured composite data. In view of these, it is natural that
the overall prediction accuracy for a strength be one half less than that for a stiffness of the same
composite. We will show in the paper that such an accuracy is indeed achievable.

2 EVALUATION OF INTERNAL STRESSES
A composite is heterogeneous by nature. Stresses and strains should be defined upon averaged
guantities with respect to its RVE (representative volume element) V'’ through

o, =([&an /v, e =(&a)/V )
v s

where a stress or strain with ~ on head represents a point-wise quantity. Equations (1) represent a
homogenization on the composite. Even though point-wise stresses and strains, ¢, and &, are

obtainable by, e.g., an FEA, the homogenization of Egs. (1) must be carried out before the effective
properties of the composite can be determined. When only fiber and matrix are contained in V’, he

above integrations read
{o:}=V, {Gif HVolo}

{e3=V{s' 1V, "} 2.2)

where V is a volume fraction with Vi+Vn=1. A super-/sub-script f or m refers to fiber or matrix,
whereas a quantity without any suffix is related to the composite.
Suppose that there is a bridging tensor, [Ajj], such that

{o7}=[AKo}

2.1)

3

which together with Eq. (2.1) results in ©)
{0/ =V [+ IAD o }=[B,{o } @

{o"}= [Aj][Bij]{Jj}. (5)

From Eg. (2.2) together with constitutive relationships of the fiber, matrix, and the composite, the
compliance tensor of the composite is given by??

[Si1= (v [S 1+ VA ST A DV, [+, [AD ©)

On the other hand, any homogenization based micromechanics model corresponds to a bridging

tensor, which can be used to determine the internal stresses of the fiber and matrix through Egs. (4)
and (5). In fact, from Eq. (6), the bridging tensor is given by

[A1=V, [S;1-[S§ D[S 1-[S; D/V,, )
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Thus,determination of the internal stresses in the fiber and matrix of a composite is equivalent to
that of the elastic properties of the same composite. The accuracy of a micromechanics model in
evaluating the internal stresses can be assessed by comparing the model’s prediction and the
measurement on elastic properties of the composite.

3 ASSESSMENT ON STIFFNESS PREDICTIONS

Hinton et al. organized the three WWFEs to judge efficiency of the current strength theories for
composites. A total number of 9 independent material systems were used. Mechanical properties of the
fibers and matrix , fiber volume fractions and ultimate strengths of the 9 UD composites were
provided[20-22], and are shown in Table 1. Measured effective properties and strength of the
composites by the exercise organizers[20-22], used as a benchmark to assess the predictability of
thel2 models summarized before, are listed in Table 2. Predictions for the effective five elastic moduli
of each of the 9 UD composites by the 12 models are made. The overall averaged errors by the 12
models and a ranking for the stiffness prediction accuracy are presented in Table 3. It is seen that the
Bridging Model’s prediction for the stiffnesses of the 9 composites is the most accurate, with an
overall correlation error of 10.38%. The second highest accuracy is achieved by the finite volume
method, with an overall correlation error of 12.83%, which shows an accuracy lost of 24% in
comparison with the Bridging Model’s prediction.

4  HIGHLIGHT ON UN IAXIAL STRENGTH PREDICTION
The compliance tensor of a composite by a micromechanics model is given by

[S;1= {[S“’ b ] (8.1)
0 [S;l.
1/E, -v,lE, —v,lE}, 1/G,, 0 O
[Sij]o =|-v,/E; 1/E,, —v,/E,], [Sij]r = 0 1G, O . (8.2)
-v,,/E, —v,/E,, 1/E,, 0 0 1/G,

Substituting Egs. (8) into Eq. (7), the bridging tensor for the composite is obtained. Under a
uniaxial load condition, only a longitudinal strength is controlled by a fiber failure, whereas all of the
other failures are resulted from matrix’s failures. Thus, we only need to determine the following
relationships

f_ 0 m _ 0 m __ 0 m _ 0
O = 210_11, 0= ﬂzazzy 033 = 230_23, 01, = 407, _ 9)
Where 4i’s are dependent on the bridging tensor and o);, Gp,, Oy, and o}, are external loads

applied individually to the composite once at a time.

It is noted that the stresses by Egs. (9) are homogenized quantities. They should be converted into
“true” values before used in assessing a fiber or matrix failure if the original strength data of the fiber
or matrix are used. The stresses in the fiber are uniform[17], implying that its homogenized and true
stresses are the same. The stresses in the matrix, however, are not uniform. Each of them should be
multiplied with a stress concentration factor (SCF) of the matrix owing to the introduction of the fiber.
A matrix plate with a hole generates a stress concentration in its neighborhood if the plate is subjected
to an external load. Similarly, when the hole is filled with a fiber of different properties the matrix
sustains a stress concentration as well.

5 SUMMARY ON SCFS

The most importantly, an SCF of the matrix in a composite cannot be defined as a point-wise stress
divided by an overall applied one[2], as done in a classical approach. Otherwise, the resulting SCFs
would be infinite at voids and micro-cracks which occur in a composite by nature. At those defects,
point-wise stresses of the matrix are singular. As a classical SCF is defined as a point-wise (something
like zero-dimensional) stress divided by the overall applied quantity, which is in fact a
surface-averaged (two-dimensional) stress, the new definition for an SCF of the matrix must be made
by a line-averaged (one-dimensional) stress divided by a volume-averaged (three- dimensional) one.
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5.1 SCFS under transverse loads
Under a transverse load (Fig. 1), a matrix SCF is defined as®

1 i
R-R:

~m
Oy

| oo dR

&) (022)em

K,o(9) =

(10)
where &, is a point-wise stress of the matrix in the loading direction determined on a CCA
model,;?w is a a vector along a line which has an inclined angle ¢ with the loading direction, as

shown in Fig. 1(a), [?; and }?j are the vectors of l?q, at the surfaces of the fiber and matrix

cylinders, respectively. It is noted that the fiber and matrix domains in Eq. (10) must be within a
representative volume element (RVE) of the composite, i.e.,

b=al Vv, a

O-O
FRE2 TR RRET
Qutward Failure
normal-f._e” surface | Outward
normal
Failuré | |
surface
(N A A A EEEEEEEEE EEE
00 0'0
() (b)

Fig. 1. Schematic of a RVE used in defining SCF of matrix in a composite subjected to (a) a
transverse tension, (b) a transverse compression

V: is the fiber volume fraction. If one recalls that the classical definition for the SCF of a plate
containing a hole was made on the stress field determined from an infinite domain assumption, one
can appreciate the pertinence of Eq. (10) together with Eq. (11). In the latter case, the line-averaged
stress in the numerator of Eqg. (10) becomes a point-wise quantity if b—>a. Meanwhile, the volume
averaged stress in the denominator should be replaced by the surface averaged one, i.e., by 032. In

this way, the SCF obtained from Eq. (10) by setting ¢=90° equals 3, exactly the same as the classical
one.

In Eq. (10), (o,,),, is the transverse stress in the matrix calculated by the Bridging Model
through
0
82,07
(Vf +Vma'22) (12)
where Vn=1-V;. Explicit integration of Eqg. (10) reads®

A B
K ={1+— c0s2¢p+————| V2 cosdp+ 4V, (cosp)?(1—2cos2p) +
2(9) 5 Vi cos20 2(1_F)[f 0 +4V; (cosp)’( ?)

(O-?Z)BM =

Wi 2eos20+cos )|V, +a,,) s, (131

A_ 2ERE" ()" + EI{E" (v =) — Ep2(v™)° +v" 1]}
EN[ES, +E"QL-v)) + ELy™]- 2ELE™ (v,h)? (13.2)
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_ EM(4vy) - Ep+vT)
Ep[v" +4(")* =3 - E"(L+vy;) (133)

In Eqg. (13.1), ¢is the inclined angle between the outward normal to the failure surface and the loading
direction. Under a transverse tension, one has ¢=0 (Fig. 1(a)). However, under a transverse
compression, g=¢ (Fig. 1(b)) determined by virtue of Mohr’s theory as!

1 . o —on
¢:%+§arcsm ”2°—m‘“
Cuc (14)
Thus, the transverse tensile and compressive SCFs of the matrix in the composite, K, and Kj,,

are resulted from Egs. (13) as

K3,=Kz2(0), K3,=Kz(9). (15)
The transverse shear SCF of the matrix is obtained also through Mohr’s theory as®!
K KS
Ky, = 207, |[=22222
O-U,'[O-U,C (16)

In Egs. (14) and (16), o,,, o,., and o,  are the original tensile, compressive, and shear

u,t? u,c?

strengths of the monolithic matrix, respectively.

5.2 SCF under longitudinal shear
Under a longitudinal shear, the failure surface of a UD composite is shown in Fig. 212324,
Following Eq. (10), a longitudinal shear SCF of the matrix is given by (Fig. 3)
J2[Jb?—(asing)? —acosp]  ~p
! _ % gs, (17)
J2[b? — (asinp)® —acos ] 5 (012)em

where &/, and (o,),, are obtained on a CCA model™*” and by the Bridging Model, respectively,
as

Kpz(p) =

~m 009 _ 42 (Glfz_Gm)(Xzz_Xg)
{1 ? (GJ2+G"")(x§+x§)2] (19)

(19)

Fig. 2. Failures of the matrix in a UD composite under a longitudinal shearf?*24
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Fig. 3. Schematic definition for the SCF of matrix under a longitudinal shear

Substituting Egs. (18) and (19) into Eq. (17) gives rise to
(G, — G") {\/Z cos @ — Vf\/l —V.(sin @)’} |V, + a, V)
G, +G™) {\/(1 —V,(sin @)*) — \/Z cos ¢} g3

Under a transverse load, the matrix transverse stress component in a CCA model is uniform along
the thickness (where in the x;-axial) direction, see Ref. [17]. On the other hand, the longitudinal shear
load results in non-uniform shear stress in the thickness (here in the xs-axial) direction, as seen from
Eq. (18) and Fig. 3. Thus, an average on Eq. (20) along the thickness direction is necessary, resulting
in

Klz((p) =|1- (20)

1 a 1 7l2
Kip = o~ [Kia()(@) =— [ Ky;(p)cos(p)(adg)
—a -zl2
r m
oyl gy L M 21.1)
r s r
L+ G 3 33
¢ 1 X [1 X2 1 4 2 5 .,
W)= [=1-2 |- Zdx,~7 NV A Ve VA 21.2
Vi) !a\/ az\/vf ar sV Ly 158 512" 2006 (212

5.3 Longitudinal normal SCF

When a longitudinal normal load is applied to a CCA model, the resulting stresses in the matrix are
uniform[17]. Thus,no stress concentration occurs in the matrix under a longitudinal load. In other
words, the longitudinal normal SCF of the matrix in a composite equals one.

6 ASSESSMENT ON STRENGTH PREDICTIONS

From Egs. (9), the longitudinal tensile, longitudinal compressive, transverse tensile, transverse
compressive, transverse shear, and longitudinal shear strengths of a UD composite are estimated per
any micromechanics model, respectively, as

of =0, 1A, o =0y A, 03 =05 (Kphy), o35 =0l (Kgphy),
O3 = 0, [(Kyshs), and oy, = o (K ,4,) . (22)
It is possible that the volume-averaged stresses in the denominators of Eq. (10) and (17) be replaced,

m

respectively, by o,, and o/, calculated through Egs. (9). According to the two different methods
in defining the denominator stresses, one through the Bridging Model and another through Egs. (9),
the resulting SCFs are called the first class (shorted to the 15-SCFs) and the second class (shorted to
the 2"9-SCFs) SCFs, respectively. It can be easily shown that the 2nd-SCFs are given by
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Three kinds of predictions for the uniaxial strengths of all the 9 UD composites have been made in
terms of the 12 models. The first and the second predictions are carried out with the 1-SCFs and the
2M-SCFs incorporated, whereas the third predictions are made with no SCFs taken into account (i.e.,
setting K;2= K;,=Kas= Ki2=1 in Egs. (22). It is noted that the first and second kinds of predictions by

Bridging Model are the same. Three kinds of predictions’ averaged errors by the 12 models and a
ranking for the strength prediction accuracy are presented in Table 4.

E-Glass E-Glass AS4 T300 IM7 T300 AScarbon S2-Glass G40-800
LY556 MY750 3501-6 BSL914C 85517 PR319  Epoxy Epoxy 5260
El(GPa) 80 225 230 276 230 231 87 290
El,(GPa) 80 & 15 15 19 15 15 87 19
ﬂ1[2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
6'11; (GPa) 33.33 30.8 15 15 27 15 15 36.3 27
,uzf3 0.2 0.2 0.07 0.07 0.36 0.07 0.07 0.2 0.357
Elml (GPa) 3.35 3.35 4.2 4.0 4.08 0.95 3.2 3.2 3.45
EZIHZ (GPa) 3.35 3.35 4.2 4.0 4.08 0.95 3.2 3.2 3.45
/11[”2 0.35 0.35 0.34 0.35 0.38 0.35 0.35 0.35 0.35

G7(GPa) 124 124 1567 1481 1478 0352 1185 1185 128
12

p 035 035 034 035 038 035 035 035 035

o/, (MPa) 2150 2150 3350 2500 5180 2500 3500 2850 5860

o’ (MPa) 1450 1450 2500 2000 3200 2000 3000 2450 3200

u,c

o, (MPa) 80 80 69 75 99 70 85 73 70
o’ .(MPa) 120 120 250 150 130 130 120 120 130
o” . (MPa) 54 54 50 70 57 41 50 52 57
v, 062 06 06 0.6 0.6 0.6 0.6 0.6 0.6
Table 1
Measured
£, (GPa) 535 456 126 138 165 129 140 52 173
£,,(GPa) 177 162 11 11 8.4 5.6 10 19 10
Ly 0278 0278 028 028 034 0318 03 03 033
G,(GPa) 583 583 66 55 5.6 1.33 6 6.7 6.94
G,,(GPa) 632 579 393  3.93 2.8 186 335 6.7 3.56

0'1”1’[ (MPa) 1140 1280 1950 1500 2560 1378 1990 1700 2750
oly"(MPa) 570 800 1480 900 1590 950 1500 1150 1700
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ol (MPa) 35 40 48 27 73 40 38 63 75
fops “(MPa) 114 145 200 200 185 125 150 180 210
ol (MPa) 50 50 55 - 57 45 50 40 57
o/, (MPa) 72 73 79 80 90 97 70 72 90
Table 2
Model N Average Error Rank Model N Average Error Rank
error  ratio ing error  ratio ing

Bridging model

45 10.38% 1.0 1 Halpin-Tsai formula 45 19.24% 185 7

FAM 45 1283% 124 2 Modified rule of 45 19.35% 186 8
mixture model
FEM 45 13.08% 1.26 3 Mori-Tanaka model 45 1959% 189 9
Chamis model 45 14.09% 136 4 generalized 45 19.66% 1.89 10
self-consistent model
GMC 45 15.07% 145 5  Self-consistent model 45 21.86% 2.11 11
Hill-Hashin-C-L 33 17.22% 1.66 6  Rule of mixtur model 45 284% 274 12
model
Table 3
Model N Average Error Rank Model N Average Error Rank
error  ratio ing error  ratio ing
Bridgingmodel 53 21.1% 1.0 1 Halpin-Tsai formula 53 30.1% 143 6
FAM 53 23.0% 1.09 2 Generalized 53 302% 143 8
self-consistent model
FEM 53 23.1% 109 3 Mori-Tanaka model 53 30.2% 143 8
Chamismodel 53 254% 120 4 Modified rule of 53 30.7% 145 10
mixture model
GMC 53 254% 120 4 Self-consistent 53 327% 154 11
model
Hill-Hashin-C-L 18 30.1% 143 6 Rule of mixture 53 445% 211 12
model model
Table 4.a with the 1st-SCFs
Model N Averag Error Rank Model N Averag Error Rank
eerror ratio ing eerror ratio ing

Hill-Hashin- C-L 18 198% 1.0 1 Modified rule of 53 27.3% 1387 7

model

sistent mo

mixture model
Bridging model 53 21.1% 1.07 2 GMC 53 28.9% 1.46 8
Halpin-Tsai formula 53 264% 133 3 FAM 53 29.7% 1.50 9
Generalized self-con 53 26.4% 133 3 FEM 53 29.7% 1.50 9
del
model 53 264% 133 3 Chamis model 53 31.6% 1.60 11

Mori-Tanaka

Self-consistent model 53 26.9% 1.36 6 Ruleof mixturmodel 53 31.8% 1.61 1

Table 4.b with the 2st-SCFs

Model

N Averag Error Rank Model N Averag Error Rank
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eerror ratio ing eerror ratio ing
Rule of mixture 35 304% 1.0 1 Hill-Hashin-C-L 12 65.7% 2.16 7
model model
Modified rule of 35 435% 143 2 GMC 35 68.7% 2.26 8
mixture model
Mori-Tanaka model 35 46.4% 1.53 3 FAM 35 77.1% 2.54 9
Halpin-Tsai formula 35 46.4% 1.53 3 FEM 35 77.2% 254 10

Generalized self-co 35 46.4% 153 3 Bridging model 35 1152% 3.79 11
nsistent model
Chamis model 35 61.9% 2.04 6 Self-consistent model 35 128.6% 4.23 12

Table 4.c with no SCFs

7 CONCLUSIONS

The following conclusions can be drawn from this study.

1. Compared with other models, bridging Model shows the best accuracy in stiffness predictions
for UD composites.

2. Incorporated with the SCFs, the prediction accuracy for a composite strength is improved
significantly, the Bridging Model’s prediction for the strengths of the 9 composites is more
accurate than the others’.

3. Without considering any SCF, all of the models show overall poor accuracy in the prediction of
composite strengths.
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