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ABSTRACT 

In this paper, we study the strength distribution of filament bundles in the superconducting wire. A 

hierarchical model is extended to analyze the stochastic strength of Bi2212 wire composite 

approximately. The Weibull function and shear-lag model are adopted to describe the filament 

strength and effective recovery length. The stress concentration factors are determined with the finite 

element analysis. Then the failure probability of higher level bundle which contains three lower level 

bundles is derived. After fitting the strength distribution of level-[i] bundle, the Weibull parameters 

can be updated and the failure probability of level-[i+1] can be obtained using the same approach. 

Finally, an asymmetric structure is considered. When one filament fails, the asymmetric structure will 

lead to the different stress concentration factors in the other two survival filaments, and the mean 

strength is also solved by modifying the model. 

 

1 INTRODUCTION 

Due to superconducting composite wires have high critical current density and high critical 

temperature [1], 2 2 1 2 8+xBi Sr Ca Cu O (Bi2212) superconducting composite wires have received much 

attention in recent years [2-7]. The critical current density can reach 2400A/mm  at high magnetic 

field 25 T [2, 3]. Bi2212 round wire is the candidate superconductor for the high filed magnet 

application which exceeds the limit of low temperature superconductor [4]. The superconducting 

Bi2212 round wire is a unidirectional fiber-reinforced composite. The composite contains Bi2212 

filaments, matrix Ag and alloy sheath. There are many theoretical or experimental researches which 

considered the mechanical and electromagnetic characteristics in the Bi2212 wire [8-17]. It is well 

known that superconducting filament is brittle and isotropy [5]. The filament breakage will occur as 

the Lorentz force and mechanical loading are applied [6, 7, 18, 19]. The brittle fracture of the 

filaments contributes to the degradation of the current carrying capacity of Bi2212 wire. Thus, it is 

important to understand the fracture strength of filaments, which is useful for predicting the 

irreversible current density degradation.  

In order to characterize the fracture behavior of filaments, it is convenient to consider the failure 

probability. The Weakest Link Theory was used to model the strength of the fiber, where the survival 

or failure probability of chain is dependent on the element length. The Weakest Link Theory states that 

the survival of structure is equivalent to the survival of all elements. The relationship can be written as 

[20]: 

    , ,

n

u n u rS S     , 
n

r

l
n

l
    (1) 

where ,u nS  is the survival probability of the structure, ,u rS  is the probability of the element, nl  is 

the length of the chain and rl  is the length of the element (reference length). So that the exponent n  is 

the number of elements. Using the Weakest Link Theory, Weibull provided a description of the failure 
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probability of structure under uniform stresses. This theory has been widely used to describe the 

strength of composite [21-23]. In addition, it is found that strength of composite is dependent on the 

number of fibers, i.e. size effect [24]. When the number of fibers exceeds a certain value, the strength 

of bundle will decrease [25, 26]. In order to predict of bundle strength, the hierarchical method is used 

by Newman and Gavbrielov [27]. However, the model neglected the influence of embedding matrix 

and length scaling. Pimenta and Pinho provided extended model which is more reasonable [28, 29]. 

Besides the size effect, the debonding and pulling out of the fiber are also considered in the model. 

Using the finite element method, Grail et al give a discussion about the variation of the stress 

concentration and the recovery length [30].  

In this paper, we adopt and extended the hierarchical model proposed by Pimenta and Pinho [28] to 

study the strength of Bi2212 superconducting composite wire. The failure probability is derived for the 

filament bundle which contains three filaments. The bundle strength and size effect of the composites 

are obtained and compared for different case. Finally, we expand our model for the asymmetric 

structure and present the effect of stress concentration factor on the mean strength. 

 

2 MODEL DESCRIPTION 

There are two kind of Bi2212 composites: 7 filament bundles and 18 filament bundles. Here, we 

only consider the 18 bundle wire which includes 18*37 filaments and study the strength of wire by 

statistical analysis.  

 

2.1 Failure analysis of bundle with three filaments 

The strength of fiber bundles in composite has been studied with the hierarchical fiber bundle model 

[28], where the level-[i] (i>1) bundle contains two level-[i-1] bundles. Since the distribution of 

filaments in Bi2212 wire is specified, it is to be noted that there are three filaments in the first level. 

The following assumptions are adopted to analyze the strength distribution approximately. 

(1). Three filaments in one level are subjected to the same stress before the failure of filaments. As 

filament A  fails, the stress will be concentrated in the other two filaments. The discussion of failure is 

restricted to the control region, and the control region is given twice as long as the recovery length 

[28]. Based on the shear lag model, the recovery length is 
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where the subscript   means recover length, A f  is the cross-sectional area of single filament, the 

superscripts i  mean the bundle level, sl  is the shear strength, C  represents the perimeter of filament 

bundle respectively. It is to be noted that the filament can be damaged only once in the control region 

due to the limitation of length. 

(2). We assume that the weakest filament A  will fail firstly when the stress reaches to a certain 

value. The location of failure is in the center of the first control length 1(A ) . For filaments B  and C , 

the failure position of them are unknown. A simplification is used in the analysis: if the failure of 

filament occurs in a recovery length, the position of failure will be in the center of the recovery length. 

Then stress concentration of filament C  is given in Fig. 1 as filaments A  and B  fail. 

 
Figure 1: Stress concentration of filament C  in the three filaments bundle. 



21st International Conference on Composite Materials 

Xi’an, 20-25th August 2017 

As pointed out in Ref. [28], the failure of composite can be divided into stable failure and unstable 

failure. The unstable failure means that when the failure of the weakest filament takes place, without 

increasing of the longitudinal stress, the adjacent filament would break immediately due to the stress 

concentration. On the contrary, when the failure of weakest filament takes place, the failure of 

adjacent filament will occur with the increase of longitudinal stress, i.e. stable failure [28]. Since the 

filaments are embedded into the metal matrix, the matrix has effect on the stress concentration. We use 

subscripts k  to represent the stress concentration as only one filament fails, and K  to represent the 

stress concentration as two filaments fail. In the following part, ,uX   ,kX   and ,KX   stand for the 

strengths the segments in the recovery length under the uniform stress, the first concentration stress 

and the second concentration stress respectively. With a statistical analysis, the failure of filament-

bundle with three filaments could be divided into following ten events (See Fig. 2). Here, we take the 

first situation as an example. 

 

A1 failure

B1 unstable 

failure

B1 stable 

failure

B2 stable 

failure

C1 stable failure

C1 unstable failure

C2 stable failure

C1 unstable failure

C1 stable failure

C2 stable failure

C2 unstable failure

C2 stable failure

C1 stable failure

Both B1 and C1 

unstable failure
 

Figure 2: The events corresponding to the failure of filament bundle. 

1E :  When the weakest filament segment 1A  fails, immediately, the failure of segment 1B  occurs due 

to the first stress concentration (unstable). 1C  also fails due to the second stress concentration 

(unstable). 
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where the symbol   means that all the cases will occur. The probability distribution function of this 

event 1F  can be expressed as: 

       1 1
0

Pr(E ) 1 1 1u u k u u K k uF dF F F F F F F F


         (4) 

Similarly, the failure probability of the others situations can be expressed as: 

          2 2
0 0

Pr E 1 1 1u u k u u K uF dF F F F F dF F
 

         (5) 
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0 0
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          4 4
0 0

Pr E 1 / 2 1 1u u k u K uF F F dF F dF F
 

        (7) 
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         5 5
0

Pr E 1 / 2 1 1u u k u K k uF F F dF F F F F


        (8) 

          6 6
0 0

Pr E 1 / 2 1 1u u k u u KF F F dF F dF F
 

        (9) 

          7 7
0 0

Pr E 1 / 2 1 1u u u k k kF F F dF F dF F
 

        (10) 

         8 8
0

Pr E 1 / 2 1 1u u k u k u kF F F dF F F F F


        (11) 

          9 9
0 0

Pr E 1 / 2 1 1u u u k k kF F F dF F dF F
 

        (12) 

         10 10
0

Pr E 1 1 1u u k u u k u uF dF F F F F F F F


         (13) 

It is to be noted that in the above events, the weakest segment in the bundle is 1A . For the events 

1 9E E , the weakest filament may be any one of the three filaments and the second weakest filament 

may be the other two. As a consequence, each event only stand for the 1/12 of case. For the event 10E , 

only the weakest filament can change. Accordingly, this event stands for the 1/6 of case. The 

probability distribution function of bundle failure in level one can be expressed as: 

  1 2 3 4 5 6 7 8 9 1012 6F F F F F F F F F F F            (14) 

The survival probability of filament under the uniform stress obeys the Weibull distribution. The 

distribution can be written as: 
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where ,u nS  and ,u nF  are the survival probability and the failure probability, and 0 , rl  and m  are the 

Weibull parameters, respectively. 0  is the strength of the filament within the length of rl . Using the 

Weakest Link Theory, the survival probability of stress concentration segment can be given by [28]: 
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2.2 The model of Bi2212 wire 

Consider the Bi2212 wire with 18*37 filaments as shown in Fig. 3. In order to establish the multi-

level filament bundle model, we ignore these filaments which are located in the center of the hexagon 

bundles. The simplified model contains 18*36 filaments. Then, level-[i] bundle may contain three or 

two level-[i-1] bundles. 

 
Figure 3: Cross section of Bi2212 wire. 
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The scheme of filament arrangement is shown in Fig. 4. In the level-[0] of the model, a Bi2212 

filament is located in the center of the rhombic matrix. The level-[1] bundle is composed of the three 

filaments which are located at the vertices of a regular triangle. Because the filament cluster is a 

hexagon, as can be seen in level-[4], the three level-[3] bundles rotate around the central axis. Then, 

the filaments in the wire can be discretized into seven bundle levels: 3*2*2*3*3*2*3. 

 

 
 

Figure 4: Scheme of bundle levels in Bi2212 wire. 

2.3 Approximate analysis of hierarchical bundle 

According to the crystallography, the tension strength of Bi2212 filament determined by the bond 

energy is about 150MPa 180MPa [31]. Referring to the above data, we can find the Weibull 

parameters 0  and rl . For the multiple integration of probability distribution, we take the absolute 

value of  1 F  to avoid the computational error. The failure probability in control regions of level-[i] 

should be transformed into the reference length by the Weakest Link Theory. Then, after fitting the 

probability distribution function of level-[i-1] with the Weibull distribution function and updating the 

Weibull parameters 0  and m , the failure probability distribution of level-[i] can be obtained by 

repeating the above procedure. In order to simplify the calculation, the parameter m  will not increase 

as it reaches a certain value. The stress concentrations factors are determined using the finite element 

software Abaqus [32]. The parameters used in the statistical analysis are shown in Table 1. 

 

Table 1: The parameters for hierarchical analysis. 

3 RESULT 

The numerical results of the strength distributions are shown in Fig. 5. It can be seen in Fig. 5a that 

with the number of filaments increasing, the probability distribution function becomes steep, which 

means the variability of bundle strength is reduced for the high level bundles. In addition, the tensile 

strengths of lower level bundles are stronger than that in single filament. When the bundles become 

large, the strength will decrease. One thing should be noted is that the failure probability is very close 

to one, and the error may be generated due to the simplification assumption of the model. The changes 

are quantitatively descripted in Fig. 5b, where   is the mean strength or the expectation of the 

probability distribution, NUM  is the number of filaments in the bundle, and CoV  is the coefficient of 
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variation. As shown in Fig. 5b, the expectation increases in level-[1] and decreases in the other levels. 

The coefficient of variation decrease and approaches to a steady value with the increasing of filaments 

number. 
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Figure 5: The numerical result of Bi2212 wire: (a) strength distributions of different levels. (b) the 

expectation and coefficient of variation of strength distributions. 

Pimenta and Pinho discussed the strength of composites, in which the level-[i] bundle contains two 

level-[i-1] bundles [28]. It is interesting to compare the strength in the wire which have different 

filament arrangement. We make a comparison of two filament arrangement: three bundles in each 

level (triple) and two bundles in each level (double). The numerical results can be seen in Fig. 6. The 

probability distribution curve in Fig. 6a is the results of filament arrangement 2*2*2*2*2*2*2*2*2, 

and the curve in Fig. 6b is the results of filament arrangement 3*3*3*3*3*3. As can be seen in Fig. 6c, 

the strength of wire (triple) is smaller than the strength of wire (double). It is due to the reason that the 

number of filament in the wire (triple) increases more quickly. 
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Figure 6: The comparison of results for two models: (a) the results based on the model given in 

Ref.[28]. (b) the present model. (c) comparison of the two models. 

The results of quantitative comparison are shown in Fig. 6c. The variation tendency of the two wire 

is similar. The mean strength of wire (triple) is smaller and decreases more obviously with the filament 

number. 

 

4 DISCUSSIONS 

4.1 Effect of shear strength 

The effective recovery length is determined by interface shear strength. Thus, the tension strength 

of bundle is dependent on the shear strength. The results for different shear strength are shown in Fig. 

7. With the increasing of the shear strength, the strengths of the bundles increases. In other word, the 

prefect interface bonding leads to higher the tension strength. The curves of the coefficient of variation 

are almost the same. 
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Figure 7: Expectation and coefficient of variation for different shear strength. 

4.2 Non-homogeneous distribution of filament 

The filaments usually have asymmetric distribution in the wire due to the fabrication and heat 

treatment. In the asymmetric structure, it can be found that three filaments have different relative 

position (See Fig. 8). Thus, the stress concentration factors are not the same for filament B  and 

filament C . In order to analyze the effect of non-homogeneous distribution, two different stress 

concentration factors are studied which are given in Table 2. 

Crack 
(Filament A)

Filament B

Filament C

 
Figure 8: The schematic diagram of asymmetric structure. 

When filament A  fail, the stress concentration factors are different for filament B  and C . Thus, it 

is interesting to find that the failure mode will also change for the asymmetric structure. The failure 

probability of filament bundle given in the above section will be modified by considering the 

difference between filament B  and filament C . 

 

Asymmetric distribution 1  Asymmetric distribution 2  Symmetric distribution 

Ck   
Bk   K    Ck  

Bk  K    Ck  
Bk  K   

1.2854 1.3209 2.1109  1.1971 1.2134 1.8812  1.219 1.219 1.803 

Table 1: The parameters for hierarchical analysis. 

For the events 1 9E E  the failure probability is different for filament B  and filament C  (the 

failure of the second filament), and we need to distinguish the sequence of the cases. Here, we will 

take the event 1E  as an example. 

1aE :  When the weakest filament segment 1A  fails, the failure of segment 1B  occurs due to the first 

stress concentration (unstable). 1C  also fails due to the second stress concentration (unstable). 

       1
0

1 1 1
B Ca u u k u u K k uF dF F F F F F F F



        (17) 

1bE :  When the weakest filament segment 1A  fails, the failure of segment 1C  occurs due to the first 

concentration (unstable). Immediately, 1B  also fails due to the second stress concentration (unstable). 
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       1
0

1 1 1
C Bb u u k u u K k uF dF F F F F F F F



        (18) 

where 
BkF  and 

CkF  are the failure probabilities of the segments 1B  and 1C  for the first stress 

concentration. Then, the probability distribution function of this event could be expressed as: 

 
*

1 1 1a bF F F    (19) 

Based on the same method, the failure probabilities of events 2 9E E  can be determined. 

For the event 10E , as the failure of the weakest filament 1A  occurs, the other two filaments will 

also break at the same time. With a little adjustment, the probability distribution function of this event 

could be expressed as: 

       *

10
0

1 1 1
B Cu u k u u k u uF dF F F F F F F F



        (20) 

The probability distribution function of asymmetric structure could be expressed as: 

  * * * * * * * * * * *

1 2 3 4 5 6 7 8 9 106F F F F F F F F F F F            (21) 
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Figure 9: Strengths for the symmetric and asymmetric structures. 

Consider a model which includes 243 filaments (3*3*3*3*3*3), and the level-[i] bundle contains 

three level-[i-1] bundles. We consider that the shear strength is invariant. The variation of mean 

strength of wire for different stress concentration factors can be seen in Fig. 9. The general trend is 

similar to that of homogeneous distribution. The mean strength increases firstly, and the decreases 

with the number of filaments. As expected, the strength of wire which has lower stress concentration 

factors has higher strength. In order to improve the strength of wire, it is important to reduce the stress 

concentration factor. 

 

5 CONCLUSIONS 

In this paper, we extended the statistical analysis model for the hierarchical bundles. The failure 

probability of filament bundle was derived for the arrangement in which one filament bundle has three 

filaments. The size effect of the Bi2212 wire was studied approximately with this method by 

considering higher level bundle includes two or three lower level bundles. The results show that the 

mean strength of the wire increases firstly with the filament number, and then decreases slightly. 

Compared to the other hierarchical structure (level-[i] bundle has two level-[i-1] bundles), the strength 

of wire (level-[i] bundle has three level-[i-1] bundles) is reduced. In addition, the prefect interface 

bonding corresponds to a higher tension strength. At last, the mean strength of asymmetric filaments 

was presented. It can be found that strength of wire is reduced by the higher stress concentrations 

factors. In order to improve the mechanical stability, it is important to reduce the stress concentration. 
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