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ABSTRACT 

 

Biological sutures are mechanical joints connecting skeletal components with a thin interfacial 

layer of soft connective tissue, showing a complicated zigzag morphology. The interfacial layer is 

composed of aligned collagen fibers embedded in mesenchyme matrix. Biological sutures have 

multiple mechanical functions to provide protection by effectively transmitting load and dissipating 

energy, while also to supply flexibility by accommodating growth, respiration and locomotion.   

Recently, theoretical models were developed to predict the stiffness and strength of sutures with 

various wavy morphologies. In these theoretical models, the soft interfacial layer was assumed to be 

isotropic. However, due to the aligned collagen fibers in the interfacial layer, the effective mechanical 

properties of the layer are anisotropic. Therefore, it is not clear how the anisotropic properties of the 

fibrous interfacial layer and the wavy suture morphology jointly influence the mechanical properties of 

biological sutures.  

In this investigation, a composite suture model is developed in order to provide better 

understanding of the synergistic effects of suture morphology and the fiber orientation in the soft 

connective tissue. The model includes a soft thin interfacial layer connecting two bone pieces with saw 

tooth geometry. The layer is modeled as aligned fibers embedded in soft matrix. Therefore, the 

interfacial layer in the model is anisotropic, and its properties are determined by the fiber orientation, 

fiber volume fraction, and the mechanical properties of the fibers and the matrix. This theoretical 

mechanical model was used to systematically quantify the overall orthotropic in-plane stiffness of 

suture joints as a function of wavy morphology of the skeletal components, the fiber orientation, and 

matrix properties in the interfacial layer.   

 

1 INTRODUCTION 

 

Biological sutures are important composite joints connecting skeletal components with a thin layer 

of soft tissue. They are found in many biological systems, such as the cranial sutures of vertebrate 

skulls [1-3], the pelvic suture of the armored fish Gasterosteus aculeatus (the three-spined stickleback) 

[4], the sutures on the carapace of the red-eared slider turtle [5]. Biological sutures have multiple 

mechanical functions to provide protection by effectively transmitting load and dissipating energy, and 

also provide flexibility to accommodate growth, respiration and locomotion [1-2, 6-11]. For example, 

Finite Element (FE) simulations have shown that the introduction of suture joints into a FE model of 

the cranium can change the magnitude and the patterns of strain across the cranium [12-15]. 

The unique mechanical properties and multi-function of sutures are due to the synergistic effects of 

the complex zigzag geometry of the skeleton and the interfacial layer, and the fibrous structure of the 

connective tissue. On the one hand, most of the biological sutures have interdigitated wavy 

morphology to facilitate load transmission and energy dissipation [1-2, 9, 11, 16-18]. On the other 

hand, in the connective interfacial layer, aligned collagen fibers are found embedded in soft 
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mesenchyme matrix to provide connection and flexibility between skeletal parts and absorbing energy 

[3, 19].  

Recently, to explore the influence of wavy morphology on the overall mechanical properties of 

biological sutures, sophisticated theoretical models were developed to predict the stiffness and strength 

of sutures with single-waved and hierarchical triangular saw tooth geometry [16, 20]. It was proven 

that the triangular tooth geometry optimizes advantages in load transmission, weight, stiffness, 

strength, energy absorption and fatigue. The model predictions were further verified via FE 

simulations on sutures with general trapezoidal teeth [17] and mechanical experiments on 3D printed 

specimens [21]. These theoretical models provided fundamental understanding on how suture 

morphology influences the overall mechanical properties of sutures. However, the fibrous 

microstructure of the soft interfacial layer was not considered and the layer was assumed to be 

isotropic. To study the influences of aligned collagen fibers on the stiffness of biological sutures, 2D 

FE models with anisotropic layer properties were employed [19]. The modeling results demonstrated 

that the arrangement of collagen fibers and suture morphology jointly optimize the suture response 

under compressive and tensile loads.  

This paper presents a theoretical mechanical model developed to systematically explore the 

synergistic effects of suture morphology and the fibrous structure of soft connective tissue.  In the 

model, the overall in-plane stiffness of suture joints is determined by the wavy morphology of sutures, 

the fiber orientation, fiber volume fraction, and the mechanical properties of fibers and matrix in the 

interfacial layer. The rest of the paper is organized in four major sections including problem 

formulation, theoretical modeling, results, and conclusions. 

 

2 PROBLEM FORMULATION 

 

The geometry of the composite suture model is shown in Fig. 1a. The light blue color represents the 

skeletal parts and the zigzag yellow layer represents the soft connective tissue. The skeletal teeth are 

considered as triangular with tooth tip angle of 2θ. When the thickness of the interfacial layer changes, 

the volume fraction of skeleton f will vary accordingly. In the model, three coordinate systems are 

defined: the first one is the global coordinate system X-Y, in which Y is normal to the general direction 

of the suture; the second one is the local coordinate system n-t, in which n is along the normal 

direction of the interfacial layer, and t is tangential to the interfacial layer, the third one is the fiber 

coordinate system x-y, it is assumed that the fibers are parallel to each other and aligned in the 

direction x. The orientation of collagen fibers is defined by angle β, which is the clockwise angle 

between the unit vector n and the fiber direction x as shown in Figs. 1a and 1b in 2D and 3D views, 

respectively. In the model, β can change from 0
o
 (when fibers are perpendicular to the interface) to 

180
o
. The suture model is subjected to far-field stress that corresponds to surface traction   at the 

boundaries. The surface traction is described as   XYYX  ,, in the global coordinate system. 
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Fig. 1: (a) Schematic graph of the composite suture model, and 

(b) the 3D view of the interfacial layer. 
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3 THEORETICAL MODELING 

 

3.1 Overall stiffness of sutures 

 

The mechanical properties of each component are defined as: the Young’s modulus Eb and the 

shear modulus Gb of the skeletal phase; the Young’s modulus Em and Poisson’s ratio νm of the soft 

mesenchyme matrix; the Young’s modulus Ef and the Poisson’s ratio νf of the collagen fibers. For 

biological sutures, these properties can be found in literature as: Eb = 6 GPa and the Poisson’s ratio νb 

= 0.27 [19]; Em = 12 MPa and νm = 0.45; Ef  = 360 MPa [22] and νf = 0.3 [23]. The volume fraction of 

skeleton was taken as f = 85%. Because the fibers in the interfacial layer are assumed to be aligned, the 

interfacial layer is transversely isotropic. In the fiber coordinate system x-y, the effective moduli of the 

interfacial layer (Ex, Ey, and Gxy) and the Poisson’s ratios (νxy, νyx) are determined by the fiber 

orientation β, fiber volume fraction ff, and the mechanical properties of the fibers and the matrix (Em, 

Ef, νm, νf). In literature, ff varies between 0.15-0.42. In this study, we selected the average value of ff 

=0.285. In the local coordinate system n-t, the effective moduli of the interfacial layer (En, Et, and Gnt) 

and the Poisson’s ratios (νnt, νtn) are determined from (Ex, Ey, Gxy, νxy, νyx), and β by coordinate 

transformation. 

Therefore, the composite suture is orthotropic and the effective moduli (EX, EY and GXY) can be 

derived as functions of tooth tip angle θ, the stiffness of skeleton Eb, volume fraction of skeleton f, and 

the effective moduli of the interfacial layer (En, Et, and Gnt) as:  
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where nE  is the effective normal stiffness of the interface layer. Due to anisotropy of the interfacial 

layer, its shearing and tensile deformation are always coupled and snns  , in equations (1) and (2) are 

the coupling coefficients expressed as [24]: 
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where, sinm , cosn , and ( xyyxxyyx GEE  ,,,, ) are the transversely isotropic properties of 

the interfacial layer.  

The overall shear modulus of suture can be written as [17, 21]: 
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where
ccc b ,,  are non-dimensional parameters expressed as: 
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3.2 Effective stiffness of the fibrous interfacial layer 

 

The effective stiffness of the interfacial layer in the local coordinate system n-t is related to that in 

the fiber coordinate system x-y as: 
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where the transversely isotropic properties of the interfacial layer ( xyyxxyyx GEE  ,,,, ) in the fiber 

coordinate x-y can be obtained through Voigt law, Reuss law, and Maxwell’s reciprocal theorem as: 
 

  mfffx EfEfE  1 ,                                                 (9) 
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where
21 m

mps

m

E
E


  is the plane-strain stiffness of the matrix, and ff is the volume fraction of fibers in 

the interfacial layer. Thus, through Eqs. (1–13), with the mechanical properties chosen from literature 

for each material component, the effective moduli (EX, EY and GXY) can be numerically determined as 

functions of θ and β. 
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4 RESULTS 

 

The overall moduli (EX, EY and GXY) of suture joints predicted from Eqs. (1), (2) and (5) are plotted in 

Fig. 2 as functions of fiber orientation β for four tooth tip angles, θ =10
o
, 30

o
, 45

o
, and 60

o
. It can be 

seen that longitudinal stiffness EY, in almost the entire range of β (except for β <~30
o
) increases when 

θ decreases. There are two peaks on EY – β curve, the first peak is when β is between 0
o 

– 90
o 

(specifically, at β =42.5
o
, 39.5

o
, 38.4

o
, and 33.2

o
, for θ =10

o
, 30

o
, 45

o
, and 60

o
, respectively) and the 

second is when β is between 90
o 
– 180

o
 (specifically, at β =133

o
, 129.5

o
, 128.3

o
, and 123.8

o
, for θ =10

o
, 

30
o
, 45

o
, and 60

o
, respectively). EY reaches the lowest value when the fibers are either perpendicular to 

the interface (β = 0
o
 or 180

o
) or parallel to the interface (β = 90

o
). The three valley are almost the same:  

EY = 958, 953 and 951 MPa at β = 0
o
, 90

o
, and 176.5

o
, respectively. Also, the two peaks are different in 

magnitude. For example, for θ =10
o
, the two peaks are EY = 1915 MPa and 1714 MPa at β = 43

o
, 

133.5
o
 respectively. The second peak is lower than the first one due to the anisotropy-induced coupling 

between shear and tensile deformation in the interfacial layer, as shown in Eqs. (1-4).  
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Fig. 2: Effective moduli of sutures with different tooth tip angel θ, and different fiber orientation β. 

 

EX changes in a very large range with β. For θ =30
o
, 45

o
, and 60

o
, there are two peaks on the EX – β 

curves, but not for θ =10
o
. The highest value of EX is obtained when β is between 0

o 
– 45

o
 (specifically, 

at β =10.3
o
, 22.9

o
, 26.4

o
, and 33.2

o
, when θ = 10

o
, 30

o
, 45

o
, and 60

o
, respectively). The second peak is 

much smaller than the first one.  

GXY reaches the highest values at β =0
o
 and 180

o
, i.e. when the fibers are perpendicular to the 

interface, and reaches the lowest values at β = 90
o
 when the fibers are parallel to the interface. For 

θ = 10
o
, GXY only slightly varies with β. For larger θs, when β is smaller than 45

o
, GXY decreases 

dramatically when β increases; when β is larger than 135
o
, when β increases, GXY increases 

dramatically; when β is between 45
o
 and 135

o
, GXY only slightly varies with β.  

The dependence of (EX, EY and GXY) on the fiber orientation β is attributed to the β-induced 

anisotropic effective properties of the interfacial layer. According to Eqs. (6) – (8), the effective 

moduli (En, Et, and Gnt) of the interfacial layer are plotted as functions of β in Fig. 3a. It can be seen 

that En reaches its maximum when β = 0
o
 and 180

o
 while Et reaches its maximum when β = 90

o
. Gnt 

reaches the peaks at 45
o
 and 135

o
, and has minimum values at β = 0

o
, 90

o
, and 180

o
. Generally, Et has 

little influence on (EX, EY, or GXY). As shown in Eqs. (1-2), when θ < 45
o
, Gnt has larger influence on 

EY than En, and En has a larger influence on EX than Gnt; when θ > 45
o
, En has a larger influence on EY 

than Gnt, and Gnt has a larger influence on EX than En.  

The anisotropy-induced coupling coefficients, ηsn and ηns are plotted as functions of β in Fig.3b. 

The coupling coefficients quantify interaction between the shearing and normal deformation. The 

shearing stress can generate normal deformation, and the normal stress also generates shearing 

deformation. It can be seen that they are zeros at β =0
o
, 57

o
, 90

o
, 123

o
 and 180

o
. Therefore, no coupling 

effects are present at these five fiber orientations. When β is between 0
o
 and 57

o
, and 90

o
 and  123

o
, ηns 

is negative; when β is between 57
o
 and 90

o
, and 123

o
 and 180

o
, ηns is positive. Similar behavior is 

observed for ηsn with a smaller amplitude, as shown in Fig.3b.  
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Fig. 3: (a) The effective elastic moduli of the interfacial layer for various fiber orientation β; and (b) 

the coupling coefficients of the interfacial layer as functions of β. 

 

The Young’s modulus of mesenchyme matrix in the interfacial layer also plays an important role in 

determining the overall stiffness of sutures. The overall stiffness of sutures with different matrix 

stiffness (Em = 120 MPa, 12 MPa and 1.2 MPa) are plotted in Fig.4 as functions of θ. In general, when 

Em increases, the overall stiffness increases. For GXY, when θ is small, Em barely influences Gxy; while 

when θ is large, Em significantly influences GXY, as shown in Fig.4c. Also, it is further confirmed that 

when θ is small, EY and GXY are sensitive to θ, as shown in Figs.4a and 4c: when θ increases, EY 

dramatically decreases, while GXY increases. There is a critical value of θ which corresponds to the 

maximum value of GXY, and when Em increases, this critical value of θ increases, as shown in Fig. 4c.  

Ex only slightly varies when θ changes, as shown in Fig.4b. 
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Fig. 4 Overall moduli of sutures vs. tooth tip angle θ for different values of matrix stiffness Em, 

with β =45
o
: (a) EY, (b) EX, and (c) GXY. 

 

5 CONCLUSIONS 

 

The mechanical properties of biological sutures with aligned collagen fibers in the interfacial layer 

between two skeleton pieces were predicted via a composite suture model. Theoretical mechanical 

model was developed to consider the influence of fiber orientation β on the effective properties of 

sutures. The influence was systematically quantified for various suture morphologies determined by 

the tooth tip angle θ. The model was also used to study the influence of the stiffness of the 

mesenchyme matrix in the interfacial layer on the overall suture properties.  

It was found that the overall stiffness of suture is determined by the tooth tip angle, and the 

effective normal and shear moduli (En and Ent, respectively) of the interfacial layer. The fiber 

orientation β significantly influences the effective stiffness of the interfacial layer and therefore the 

overall stiffness of sutures. Generally, when the tooth tip angle decreases and the stiffness Em of the 

soft mesenchyme matrix increases, the effective moduli of sutures increase. Although, when the tooth 
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tip angle 2θ of the suture is small (less than ~15 degrees), the matrix stiffness barely influences the 

overall shear modulus GXY of sutures.  

In the range of material parameters chosen from literature, the overall longitudinal stiffness EY of 

sutures reaches two peaks around β =45
o
, and β =135

o
. The first peak around β =45

o
 is higher than the 

second peak around β =135
o
; and the minimum values of EY is obtained at β =0

o
, 90

o
, and 180

o
, i.e. 

when the fibers are either perpendicular or parallel to the interface between the skeleton and the 

connective layer. For sutures with sharp teeth (θ < 10
o
), the two peaks of EY are obtained when β is 

very close to 45
o
 and 135

o
. When the tooth tip angle θ increases beyond 10

o
, the critical fiber 

orientation β corresponding to the peaks of EY becomes smaller and smaller than 45
o
, and 135

o
. 

When θ < 45
o
, Gnt has more influence on EY than En, and En has more influence on EX than Gnt; 

when θ > 45
o
, En has more influence on EY than Gnt , and Gnt has more influence on EX than En. For 

GXY, when θ is small (θ < 10
o
), it is barely influenced by the fiber orientation β; when θ is above 10

o
, 

GXY - β curve is symmetric about β =90
o
. GXY reaches maximum when the fibers are perpendicular to 

the interface, and then dramatically decreases and reaches its lowest value at β =90
o
, i.e. when fibers 

are parallel to the interface. 
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