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ABSTRACT 

Graphene-based nanocomposites have attracted tremendous research interest over the past decade 

due to the unique mechanical properties of graphene as the reinforcement plays an important role in 

these applications. First, this paper presents an equivalent discrete model (a pseudo-beam model) to 

accurately predict the elastic properties of graphene, including the Young’s modulus and Poisson’s 

ratio. A pseudo-beam with modified internal bending moment and variable stiffness is used to 

represent the C-C bond. By calculating the deformation strain energies of unit cell, the parameter 

equivalence relationships between C-C bond and pseudo-beam are established. Further, the pseudo-

beam model is deduced based on the above energies equivalence combining Castigliano second 

theorem. By choosing the appropriate force field constants, the Young’s modulus and Poisson’s ratio 

of graphene are calculated compared with the open literatures, which verifies the availability and 

accuracy of the pseudo-beam model. Then, considering that graphene is regarded as a rectangular 

inclusion, the averaged Eshelby’s tensor for a rectangular shape in different aspect ratios is obtained, 

which parameters can be determined by the properties of graphene predicted based on the above model. 

Further, the elastic properties of graphene-based composites are predicted based on the Mori–Tanaka 

micro-mechanics scheme. The effects of aspect ratio and mass fraction of graphene on the elastic 

properties of graphene-based composites are discussed. Our work can guide the designer to accurately 

evaluate the elastic properties of graphene-based composites for further applications.   

 

1 INTRODUCTION 

Determining the fundamental mechanical properties of graphene sheet (GS) accurately is required 

for their further applications [1]. Several attempts have been employed, including experiments, 

theoretical models and computational simulations. Considering the difficulty of exact experimental 

measurements limited by testing technology and the time-consuming of computational simulations, an 

efficient theoretical model is expected to accurately predict the mechanical properties of GS.  

Currently one class of equivalent discrete model (EDM) is considered as a very efficient and 

promising technology. The basic idea of EDM is to establish the link between chemical potentials of 

covalent bond and strain energies of beam, pioneered by [2]. Based on this model, several modified 

models have been further presented [3-6]. The core of the above efforts is to capture a more accurate 

energy equivalent relationship between C-C covalent bond and beam element by adjusting beam 

parameters. 

But in the above modification models, the bending strain energy of beam is obtained using pure 

bending theory regardless of the real load conditions in the process of energy equivalence, which is 

impractical obviously. Based on this standpoint, a pseudo-beam model is presented, in which the strain 

energies of beam are calculated according to the real load conditions and a kind of variable stiffness 

beam is also introduced, which has been successfully applied [7].  
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As an interesting reinforcement-graphene sheet, the graphene-based composites are widely studied 

and applied [8]. However, currently for determining its elastic properties, the research on the 

Eshelby’s tensor for the GS considering its real geometrical morphology is relative few. Here 

combining the irreducible decomposition of the Eshelby’s tensor by [9, 10] with a rectangular aspect 

ratio, the reinforcement GS as a rectangular inclusion is introduced to determine the elastic properties 

of graphene-based composites in the Mori-Tanaka micro-mechanics scheme. 

The paper is structured as follows. In Section 2, a pseudo-beam model is presented to obtain the 

elastic properties of GS based on deformation strain energies of unit cell. In Section 3, the effective 

elastic moduli of graphene-based composites are obtained based on the Eshelby’s tensor for a 

rectangular inclusion. In Section 4, the effects of aspect ratio and mass fraction of graphene on the 

elastic properties of Graphene-based composites are discussed. Finally, the paper ends up with some 

concluding remarks in Section 5. 

 

2 A PSEUDO-BEAM MODEL ON ELASTIC PROPERTIES OF GRAPHENE 

2.1  A pseudo-beam model 

In this section, a pseudo-beam is proposed to represent the C-C bond. For clarity of the paper, the 

parameter symbols of model are defined ahead. The unit cell is chosen as shown in Fig.1a, including 

beam a, beam b, and beam c. The axial elongation, torsion angle variation and beam included angle 

variation of three beams are marked as ar , br , cr , a , b , c , and ab , bc , ca  respectively. It 

can be obtained that 4 4a b cr r r     , 4 4a b c       , 2 2bc ab ca       . The variable stiffness beam 

consists of one long beam (LB) and two short beams (SB). As stated, 1 1 2 2E A E A , 1 1 2 2G J G J  and one 

assumption is made that the bending stiffness of LB is n  times as big as one of SB, 1 1 2 2E I nE I . The 

length of LB, 1L , is r  times as long as one of the whole beam, L =0.142nm. The subscript 1 

represents LB and 2 represents SB. 

 

    

Figure 1: (a) The description of unit cell model, (b) The free-body diagram of unit cell 

The total strain energy of unit cell is the sum of strain energies due to axial, torsion and bending 

deformation. Each strain energy is as follow in sequence. 
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From the point of molecular mechanics, the dominant contributions to the total chemical potential 

energy of unit cell are calculated by summing up the respective contributions from three C-C bonds. 

The energies of unit cell due to bond stretch interaction，combined dihedral angle and out-of-plane 

torsion, bond angle variation can be obtained as in sequence. 
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where rk , k  and k  are respectively the force constants related to bond stretching, torsional and 

bending stiffness.  
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Using energy equivalence, the relationship between the pseudo-beam parameters and molecular 

mechanics force field constants can be established as 
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Further the beam parameters 1E , 1G , 1D  can be deduced. 
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where 3 3(1 )r n r   are called the bending modified coefficient.  

According to the front stiffness relationship between LB and SB, 2E , 2G , 2D  can be obtained further. 

Based on this, the bridge between pseudo-beam properties and C-C bond force field constants is 

established.  

 

2.2  Young’s modulus and Poisson’s ratio of GS 

Based on the above analysis, the Young’s modulus and Poisson’s ratio of graphene is further 

deduced. Here the armchair GS is taken for example. Considering the force and moment in the unit 

cell shown in Fig. 1b, the strain energy a

rU  due to the axial deformation of beam a and the strain 

energy due to the axial and bending deformation of beam b can be deduced as 
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The axial deflections a

r  and the horizontal deflections due to axial deformation b

r  and bending 

deformation 
b

  of beam b can be obtained using Castigliano’ second theorem as 
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The horizontal and vertical strains of the structure can be calculated as 
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Using the results in Eq. (3) and substituting / 2= / 3bc  , the Young’s modulus and Poisson’s ratio 

of graphene are obtained as follows. 
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(8) 

where t is the thickness of graphene. Similarly, the Young’s modulus and Poisson’s ratio of zigzag GS 

can be deduced, which are same as the results of armchair GS. 

Assuming that the GS is transverse isotropic, for the case of in-plane stress, it can easily obtain the 

following relationship between the stress and strain. 
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For simplifying the writing, the above equation can be rewrited to =g g gσ L ε . 

Herein, the thickness t is assumed to equal with the interlayer spacing of graphite (0.34nm) in the 

majority of the studies. Meanwhile, taking the commonly used force constants [11-12] as: / 2 469rk   

kcal/mol/nm2, / 2 63k   kcal/mol/rad2. Then the elastic constants of GS can be obtained using Eq. (8). 

The Young’s modulus gE  is 0.805TPa and the Poisson’s ratio g  is 0.273. Table 1 compares the 
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present prediction along with data from the open literatures. Substituting these two values into Eq. (9), 

the stiffness tensor g
L  can be further determined. 

 

Reference Eg (TPa) g  
Present study 0.805 0.273 

Refer. [2] 1.03 0.066 

Refer. [6] 0.804 0.273 

Refer. [13] 0.833 0.357 

Refer. [14] 0.725 0.397 

Table 1: Comparison of elastic properties of GS by the proposed model and other open results. 

3 ELASTIC PROPERTIES OF GRAPHENE-BASED COMPOSITES 

3.1 Eshelby’s tensor for the rectangular GS 

For two-dimensional isotropic material, the averaged Eshelby’s tensor for an arbitrary inclusion 

shape is expressed 

0 e= +S S S  (10) 

where 0S  and eS  represents the Eshelby’s tensor of an unit circle and the Eshelby’s tensor of 

intersection parts between the inclusion boundaries and the unit circle respectively. Their specific 

expressions are as follows by [9]. 
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Considering a rectangular inclusion of size ( 2 2a b ) with a b  and 2 2+ =1a b , the sides are set to be 

parallel to the orthonormal basis vectors respectively, the expressions about 2 2 4 4, , ,p q p q  can be 

obtained as follows.  
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, 2 =0q  and 

4 =0q  [15]. Substituting the elastic constants of GS, the Eshelby’s tensor 0S  and eS  can be determined 

for different aspect ratio  , =b a . 

 

3.2 Elastic modulus of graphene-based composites 

Assuming that the GS inclusions are ideally distributed in the polymer matrix, the Mori-Tanaka 

micro-mechanics is used to predict the elastic moduli of graphene-based composites. According to the 

Eshelby’s equivalent inclusion theory, the averaged strain gε  of the GS inclusion is obtained as 

=g g mε A ε
 

(13) 

where gA  is the strain concentration tensor expressed by 

 
1

1=g m g m
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(14) 

where I  and S  represent the identity tensor and the Eshelby’s tensor, respectively. The averaged 

stress σ  and strain tensor ε  of graphene-based composites are obtained by 
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g g m mV V σ σ σ      
g g m mV V ε ε ε  (15) 

where  
gV  and 

mV  represent the identity tensor and the Eshelby’s tensor, respectively. 

Substituting Eq. (13) and =m m mσ L ε  into Eq. (15), we can obtain  

 = g g g m m mV Vσ L A L ε
 

(16) 

The relationship between the stress and the strain for the homogenised graphene-based composites 

can be defined as 

 = = g g m mV Vσ Lε L A I ε
 

(17) 

So it can be easily obtained that 
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， ,  , ,c g m denotes the density of  composites, graphene, and  

matrix, respectively.  

 

4 RESUTLS AND DISCUSSION 

Here the material properties of GS and polymer are listed in Table 2. 

 

Properties  GS Polymer matrix 

E [TPa] 0.805 0.002 

  – 0.273 0.39 
  [g/cm3] 1.06 1.13 

Table 2: Material properties of GS and polymer. 

Using the data in Table 2, the stiffness tensor L  of graphene-based composites can be calculated for 

different mass fractions and aspect ratios. The relationship between the components of the stiffness 

tensor and the mass fractions are shown in Fig. 2.  From Fig. 2, it can be easily obtained that the 

components, including 11E , 22E , 12E  and 21E , increase with the increase of the mass fraction. The 

components 11E  and 21E  decrease with the increase of the aspect ratios  . However the components 12E  

and 22E  increase with the increase of the aspect ratios  . Whilst, the anisotropic degree can be 

obtained. With the increase of the aspect ratios  , the  material properties trend to the isotropic 

behaviour. It is easy to understand that the inclusion trends to square as the aspect ratios   varies from 

0.2 to 0.8.  
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Figure 2: The influence of mass fractions on different components of stiffness tensor E 

5 CONCLUSION 

A pseudo-beam model is proposed to accurately predict the elastic properties of GS. In the model, 

the C-C bond is represented by a variable stiffness and modified internal bending moment pseudo-

beam. Using the deformation energy equivalence of unit cell and combing the Castigliano’ second 

theorem, the Young’s modulus and Poisson’s ratio of GS are deduced. By choosing the proper force 

field constants, the Young’s modulus and Poisson’s ratio of GS is predicted as 0.805TPa and 0.273 

respectively. To determine the elastic properties of graphene-based composites, GS are considered as 

the rectangular inclusion and the irreducible decomposition of the Eshelby’s tensor for a rectangular 

inclusion shape is used. In the scheme of the Mori-Tanaka micro-mechanics, the effective stiffness 

tensor are obtained for different mass fractions and aspect ratios. The results show that the stiffness 

tensor is enhanced with the increase of mass fractions and the degree of anisotropy is decreased with 

the increase of the aspect ratio. This study may help to further understand how to establish the 

relationship of relative accurate energy equivalence in the process of determining the elastic properties 

of GS. Also it may offer a guide on the influence of the GS on the elastic properties of the graphene-

based composites. 
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