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ABSTRACT 

The load level at which a debonding occurs on the constituent fiber/matrix interface of a composite 
subjected to any load is predicted. Only the original properties of the fiber and matrix measured from 
monolithic material specimens in addition to the transverse tensile strength of a unidirectional (UD) 
composite made from the same constituents are required. Stress concentration factors (SCFs) of the 
matrix in the composite are crucial for this purpose. Such an SCF cannot be defined following a 
classical approach. The SCFs with the perfect and debonded interfaces are derived, respectively. 
Letting the predicted transverse tensile strength of the UD composite with an initial perfect and later 
debonded interface be equal to the measured counterpart, a critical Mises stress of the matrix at which 
the debonding occurs is obtained. Each Mises stress of the matrix in any other composite from the 
same constituent system is assessed against the critical value, and the load level when the interface 
debonding occurs is determined accordingly.  
 
1 INTRODUCTION 

The interface between reinforcing fibers and matrix of a composite plays a key role in transferring 
loads on the composite into the fibers. In order to improve the overall load carrying capacity of the 
composites made from various fiber and matrix systems, a great many techniques have been developed 
to perform interface modifications. However, given a fiber and matrix system, it is still a challenge 
whether the interface bonding between the two constituents is strong enough and how much potential 
exists if an interface modification is going to carry out.  

The original purpose of this work is to predict the strength of a composite with an initial perfect 
and later debonded interface subjected to any load using its constituent properties measured 
independently. SCFs of the matrix in the composite have been found to be crucially important for this 
purpose[1,2]. Such an SCF cannot be defined, following a classical approach, as a maximum point-wise 
stress divided by an overall applied one. It must be determined upon an averaged stress. The SCFs of 
the matrix having a perfect interface bonding with the fiber have been derived previously. The 
predicted transverse tensile strengths of some composites were in large discrepancy with the measured 
data[2]. There must have been an interface debonding in those composites to cause the discrepancy. 

In this work, the transverse tensile SCF of the matrix with a debonded fiber/matrix interface is 
derived. By imposing that the predicted transverse tensile strength of a UD composite with an initial 
perfect and later debonded interface to be equal to the measured one, a critical Mises stress of the 
matrix is determined. Any other composite made from the same fiber and matrix system will undergo 
an interface debonding if a Mises stress of the matrix is equal to or greater than the critical value. Only 
a transverse tensile test on a UD composite made from the same fiber and matrix system under 
consideration is necessary to understand the interface characteristics. Off-axial tensile strengths of two 
UD composites are estimated with the assumptions of perfect and debonded interfaces, respectively. 
The predictions with the debonded interfaces correlate the best with the available experiments. 

 
2 SUMMARY OF BRIDGING MODEL 

Any composite is heterogenous by nature. Stresses should be defined upon averaged quantities with 
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respect to its RVE (representative volume element) V’ through  
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if only fiber and matrix are within V’. V is a volume fraction, with a super-/sub-script f or m referring 
to fiber or matrix. A stress with ∼ on head represents a point-wise quantity. Eqution (1) represents a 
homogenization for the composite.   

Suppose that there is a bridging tensor, [Aij], such that   
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Further, a compliance tensor of the composite is given by[3] 
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On the other hand, it is found from Eq. (6) that 
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In other words, any micromechanics model corresponds to a bridging tensor. Thus, the determination 
of internal stresses through Eqs. (4) and (5) in the fiber and matrix of a composite is equivalent to that 
of the elastic properties of the same composite. Several comparisons have shown that Bridging Model 
is among the most efficient micromechanics models[4,5]. Non-zero bridging tensor elements are  
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All of the other Aij
’s not shown above are zero. fE11 , fE22 , and fG12  are longitudinal, transverse, and in-

plane shear moduli of the fiber, respectively. f
12ν  is its longitudinal Poisson’s ratio. Em, Gm, and νm are 

Young’s and shear moduli and Poisson’s ratio of the matrix.  
 
3  SCFS OF THE MATRIX UNDER PERFECT INTERFACE BONDING 

Consider an E-Glass/LY556 UD composite used in WWFEs which is only subjected to a transverse 
tensile load, 0

22σ . The non-zero internal stresses by Bridging Model are easily found to be  
0
2211 082.0 σσ −=f , 0

2222 342.1 σσ =f , 0
2211 134.0 σσ =m , 0

2222 442.0 σσ =m .           (9) 
Under a transverse tension, a composite failure is attained firstly by a matrix failure. Thus, the transverse 

tensile strength of the composite is given by tu ,
22σ =Ym/0.422, where Ym is the allowable transverse tensile 

stress of the matrix in the composite. A straightforward choice is to set Ym= m
tu ,σ =80MPa[6], where m

tu ,σ  is 

the original tensile strength of the pure matrix. If so, one gets tu ,
22σ =181MPa, which is more than 5.2 times 

greater than Y (=35MPa[6]), the measured transverse tensile strength of the composite.  
This is not a special case, but valid for almost every composite. In other words, the internal stresses by 

Eqs. (4) and (5) are homogenized quantities. They must be converted into “true” values before a 
failure assessment can be made against the original strengths of the fiber and matrix. As point-wise 
stresses of the fiber are uniform[7], its homogenized and true stresses are the same. The true stresses of 
the matrix can be obtained by multiplying its homogenized ones by respective SCFs. This is because a 
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matrix plate with a hole generates an SCF when subjected to an in-plane tension. If the hole is filled 
with a fiber of different properties, an SCF occurs as well.  

The most critical issue is that such an SCF can not be defined, following a classical approach, as a 
maximum point-wise stress of the matrix divided by the overall applied one. Otherwise, the resulting 
SCF would be infinite when there is a crack on the fiber and matrix interface, due to the fact that the 
point-wise stresses of the matrix at the crack tip are singular. As such, an averaged stress must be used 
for the new definition. A classical SCF of a plate with a hole is defined as a point-wise (something like 
zero-dimensional) stress divided by the overall applied quantity, which is in fact a surface-averaged 
(two-dimensional) stress, the new definition for an SCF of the matrix must be made by a line-averaged 
(one-dimensional) stress divided by a volume-averaged (three- dimensional) one, as the three is the 
maximum attainable in the denominator. The new definition for an SCF of the matrix subjected to a 
transverse load (tension or compression) is given by[2] 
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where m
22

~σ  is a point-wise stress of the matrix determined on a CCA (concentric cylinder assemblage, 
Fig. 1 with b→∞) model along the loading direction, BM

m )( 22σ  is given by Bridging Model, ϕ is the 
inclined angle of the outward normal to the failure surface with an external load (Fig. 1), and aRϕ


 and 

bRϕ


 are the vectors of ϕR


 at the surfaces of the fiber and matrix cylinders within a RVE, respectively. 

The latter requirement implies  
                                    fVab /=                                                                                          (11) 
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Figure 1: Schematic of a RVE used in defining SCF of matrix in a composite subjected to (a) a 
transverse tension, (b) a transverse compression  

 
Explicit expressions for the SCFs of the matrix under a transverse tension, transverse compression, 

transverse shear, and a longitudinal shear are derived, respectively, as[1,2] 
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In the above, f
23ν  is the transverse Poisson’s ratio of the fiber. m

tu ,σ , m
cu ,σ , and m

su ,σ  are, respectively, the 
original tensile, compressive, and shear strengths of the matrix. 

The true stresses of the matrix due to an external load applied on the composite are obtained through 
        Tm

iiK }{ σ = },,,,,{ 1212131223233333222211
mmmmmm KKKKK σσσσσσ ,                                         (14) 

where m
ijσ  are the homogenized stresses of the matrix obtained from Eqs. (5). Supposing that two 

transverse normal stress components, m
22σ  and m

33σ , do not occur simultaneously in the matrix, as seen 
in most composites, the transverse SCFs, K22 and K33, in Eqs. (14) are defined as 
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Original elastic and strength data of the 9 UD composites used in the three WWFEs[6] are listed in 
Table 1. From it, the SCFs of the matrices in the composites are evaluated as per Eqs. (12) and (13), 
and are shown in Table 2. Predicted uniaxial strengths of the 9 composites together with averaged 
relative error made upon Bridging Model are summarized in Table 3. Both the predictions with and 
without the SCFs incorporated are included. As can be seen from the table, with no SCFs, the overall 
averaged correlation error between the predicted and the measured transverse tensile, transverse 
compressive, transverse shear, and longitudinal shear strengths of the composites is 115.3%. 
Incorporation of the SCFs, that error is reduced to 22.7%, which is 5.08 times smaller! As most 
composite failures are resulted from matrix failures, SCFs of the matrix play a fatal role in analysis of 
a composite failure if only original constituent information is used. 
 

 E-Glass 
LY556 

E-Glass 
MY750 

AS4 
3501-6 

T300 
BSL914C 

IM7 
8511-7 

T300 
PR319 

AS  
Epoxy 

S2-Glass 
Epoxy 

G400-800 
5260 

fE11 (GPa) 80 74 225 230 276 230 231 87 290 
fE22 (GPa) 80 74 15 15 19 15 15 87 19 

f
12ν  0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

fG12 (GPa) 33.33 30.8 15 15 27 15 15 36.3 27 
f

23ν  0.2 0.2 0.07 0.07 0.36 0.07 0.07 0.2 0.357 
Em(GPa) 3.35 3.35 4.2 4 4.08 0.95 3.2 3.2 3.45 

νm 0.35 0.35 0.34 0.35 0.38 0.35 0.35 0.35 0.35 
Vf 0.62 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 

f
tu ,σ (MPa) 2150 2150 3350 2500 5180 2500 3500 2850 5860 

f
cu ,σ (MPa) 1450 1450 2500 2000 3200 2000 3000 2450 3200 

m
tu ,σ (MPa) 80 80 69 75 99 70 85 73 70 

m
cu ,σ (MPa) 120 120 250 150 130 130 120 120 130 
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m
su ,σ (MPa) 54 54 50 70 57 41 50 52 57 

X (MPa) 1140 1280 1950 1500 2560 1378 1990 1700 2750 
X’ (MPa) 570 800 1480 900 1590 950 1500 1150 1700 
Y (MPa) 35 40 48 27 73 40 38 63 75 
Y’ (MPa) 114 145 200 200 185 125 150 180 210 
S23 (MPa) 50 50 55 _ 57 45 50 40 57 
S12 (MPa) 72 73 79 80 90 97 70 72 90 

Table 1: Original properties of the 9 UD composites used in WWFEs[6] 

 
 E-Glass 

LY556 
E-Glass 
MY750 

AS4 
3501-6 

T300 
BSL914C 

IM7 
8511-7 

T300 
PR319 

AS  
Epoxy 

S2-Glass 
Epoxy 

G400-800 
5260 

tK22  3.339 3.253 2.098 2.143 2.327 3.123 2.339 3.317 2.464 
cK22  2.249 2.181 1.469 1.57 1.761 2.035 1.743 2.172 1.732 

K23 3.02 2.936 1.337 2.421 2.034 2.167 1.999 2.982 2.469 
K12 1.52 1.491 1.424 1.43 1.475 1.51 1.449 1.5 1.483 

Table 2: SCFs of the matrices in the 9 UD composites with perfect interface bonding 
 

 E-Glass 
LY556 

E-Glass 
MY750 

AS4 
3501-6 

T300 
BSL914C 

IM7 
8551-7 

T300 
PR319 

AS carbon 
Epoxy 

S2-Glass 
Epoxy 

tu ,
11σ (MPa) 1367 1329 2035 1517 3139 1504 2119 1752 

cu ,
11σ (MPa) 922 896 1519 1214 1939 1203 1817 1506 

With SCFs of perfect interfaces 
tu ,

22σ (MPa) 54.2 54.3 52.9 57.1 73.7 48 63.1 49.3 
cu ,

22σ (MPa) 120.7 121.6 273.9 156 127.9 136.9 119.5 123.9 
u
23σ (MPa) 40.5 40.6 60.2 47.2 48.5 40.5 43.4 39.1 
u
12σ (MPa) 81 80.7 70.5 99.2 84 62.3 72 78.3 

Without any SCFs 
tu ,

22σ (MPa) 181 176.5 111.1 122 171.8 149.8 147.7 163.7 
cu ,

22σ (MPa) 271.6 265.1 402.6 245 225.5 277.9 207.9 268.9 
u
23σ (MPa) 122.3 119.4 80.7 114 99 87.9 86.8 116.5 
u
12σ (MPa) 123.1 120.2 100.1 141.9 123.5 94.1 104.4 117.5 

Table 3: Predicted uniaxial strengths and relative errors for the 9 UD composites 
 

4  TRANSVERSE TENSILE SCF WITH A DEBONDED INTERFACE 
 

Table 3 indicates that the averaged relative error in prediction of transverse tensile strengths of the 
composites is 39.3%, much greater than the overall averaged error, 22.7%. This was mainly attributed 
to the interface cracks in some of the composite systems[8], which significantly reduced the overall 
load carrying ability of the composites. Thus, a transverse tensile SCF of the matrix after an interface 
crack needs to be derived.  

Suppose that a stable crack with a central angle of 2ψ occurs on the fiber and matrix interface of a 
CCA model under a transverse tension, as shown in Fig. 2(a). Toya obtained the stress fields in the 
fiber and matrix[9], and the stress component of the matrix in the loading direction is given by[9] 
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z=x2+ix3 is a complex number, M’=dM/dz, and a variable with “−” on head represents its conjugate. 
 
 
 

 
 
 
 
 
 

 
                                                (a)                                                     (b) 

Figure 2: (a) Schematic failure of a transverse tensile-loaded composite with an interface crack, (b) 
failure locus of a composite after interface cracks[8] 

 
Toya’s solution is valid only for a plane stress state problem with an isotropic assumption for both 

the fiber and the matrix. In the case of a composite, a plane strain condition is applicable and a 
transversely isotropic material has to be considered. When such a case occurs, the strain-stress 
relationships of the material become 
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Compared with those of an isotropic material under a plane stress condition, i.e.,  
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it is seen that only the elastic modulus and Poisson’s ratio need to be replaced by  
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respectively. It is noted E33=E22 due to the transverse isotropy. In other words, the Toya’s solution will 
be also applicable to a plane strain state problem with a transversely isotropic fiber, as long as Eqs. 
(16.8) are changed, respectively, to 
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Substituting Eqs. (16) together with Eqs. (11), (17), and BM
m )( 22σ  into Eq. (10) results in  
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where 'a =a(cosϕ+isinϕ) and 'b =b(cosϕ+isinϕ).  
It remains a question how to assign the angle ϕ in Eq. (18.1) so that the transverse tensile SCF, 

denoted by tK22
ˆ , can be determined. As a transverse plane is isotropic, it is likely that a tensile load in 

this plane would result in a failure occurring along a direction where the maximum averaged stress is 
attained. In other words, tK22

ˆ  should correspond to the maximum of )(ˆ
22 ϕ
tK , which is recognized to be  

                      }900),(ˆmax{)(ˆˆ 00
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Indeed, Hobbiebrunken et al.[8] have shown that the failure surface of the composite after an interface 
debonding was initiated from the crack end, as seen in Fig. 2(b), which is consistent with the present 
choice for the integration line.  

Finally, let us consider determination of the crack angle ψ. Due to Poisson’s deformation of the 
matrix, there is a maximum compression applied on the fiber along the axis perpendicular to the 
tensile load. The crack angle ψ must be smaller than π/2. At the crack tip, the relative displacement 
between the fiber and the matrix along the radial direction must be zero. However, both England and 
Toya pointed out that the relative displacement at another point of the interface with a smaller central 
angle, 2ϕ=2(ψ-γ), was also zero[10,9]. According to Toya’s solution, the last condition is expressed as   
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Substituting Eqs. (21.1) and (21.2) into Eq. (20), one gets  
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Following England[10] and Toya[9], the solution to Eq. (22) can be transformed into an equation for a 

phase angle to simplify the analysis. The solution to Eq. (22) is equivalent to that to the following 
condition (with ϕ=ψ-γ) 
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Let us consider different values attained by ξ separately. When ξ<1, we have 
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This implies that Re(g)>0 and Im(g)<0, where g= ))(2exp(
)exp(

)1(21
0 πψλ

ϕ
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−
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k
G . In other words,  

we have  
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Furthermore  λ 
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since λ>0. In light of Eqs (24) and (25), the right hand side of Eq. (23) should take -0.5π. Further 
simplification on Eq. (23) leads to 
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In the last expression, the condition of sin(0.5γ)≈0.5γ and sin(ψ-0.5γ)≈sin(ψ) has been used. As Eq. 
(26) or γf(γ)=0 (since γ>0) represents the fact that the relative displacement of the fiber and matrix on 
the interface along a radial direction attains the minimum locally, it is required that   
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where  )cos()2exp()1(2101 ψλψξkkGJ −−−= ,                                                             (28.1) 
            )sin()2exp()1(22 ψλψξkJ −= ,                                                                      (28.2) 
            2213 /)]sin()cos()[2exp()1(2 JJJkJ ψψλψξ −−= .                                          (28.3) 
From Eq. (27), one obtains 
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because λ<< ]})/(tan2[
2
1exp{ 21

1 ψ
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+− JJ sin(ψ).  

If ξ>1, it follows that λ=-ln(ξ)/(2π)<0. Thus, γ<0. Physically, ϕ=ψ-γ>ψ, meaning that an oscillating 
point occurs outside the crack tip. In such a case, the condition that γf(γ) attains a minimum is no 
longer applicable. However, the function f(γ) itself should assign a minimum. In other words, one has 
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which leads to 
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Finally, ξ=1 implies λ=0. Both Eq. (29) and Eq. (31) give γ=0. Substituting it into Eq. (20) results in 
none unique solution for the crack angle ψ. Hence, ξ=1 corresponds to a singular crack. However, any 
practical measurement for the fiber and matrix properties involves in a deviation. Adjusting a fiber or 
matrix property so that ξ≠1 can leads to a unique solution for the angle ψ.  

Substituting Eq. (29) or (31) into Eq. (20), a crack angle is obtained, and the transverse tensile SCF 
of the matrix with the debonded interface is determined from Eq. (19). 



21st International Conference on Composite Materials 
Xi’an, 20-25th August 2017 

5 INTERFACE DEBONDING DETERMINATION 
 

Let a UD composite be subjected to a transverse tensile load, 0
22σ , up to an ultimate failure. The 

measured transverse tensile strength of the composite is Y. Suppose that the fiber/matrix interface of 
the composite is initially bonded perfectly. When the load is increased to a critical level, e.g. 0

22σ̂ , a 
stable crack with a central angle of 2ψ occurs on the interface. Many reports have pointed out that an 
unstable propagation from an initial interface crack to the last stable angle is short[8], with no 
significant change in the applied load. Thus, we can safely assume that at a transverse load level 
smaller than 0

22σ̂  the interface is in perfect bonding. 
By Bridging Model, the transverse stress in the matrix when the crack occurs reads 

              0
22

22

22
22 ˆ

7.0)3.0(
7.03.0ˆ σσ m

m
f

mf

mf
m

EVEVV
EE

++
+

= .                                                      (32) 

Further, the longitudinal stress of the matrix at the critical load level is obtained as 
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No other stress in the matrix exists. Supposing that the transverse matrix stress corresponding to the 
composite failure is denoted by m

22
~σ , one has 
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From Eqs. (32)-(34), the critical transverse tensile load is found to be 
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If it is near to, equal to, or greater than the transverse tensile strength, Y, the fiber and matrix system is 
said to have a perfect interface bonding up to failure. No interface modification is necessary. 
Otherwise, the system will undergo an earlier interface crack and further such modification is 
preferred.  

Which quantity should be chosen to assess an interface crack of the composite at any other load 
condition? It is likely that a critical Mises stress of the matrix would be most suitable, which is 
evaluated through 
             mmtmtmm
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When any other composite made of the same fiber/matrix system is subjected to an arbitrary but planar 
load, a Mises true stress of the matrix at a load step is determined through 
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l is a load step, { md 11σ , md 22σ , md 12σ } are the stress increments in the matrix due to the l-th load increment 
applied on the composite calculated by Bridging Model. An interface crack occurs if and only if 
              lm )( 1σ >0 and m

el
m

e σσ ˆ)( ≥ ,                                                                        (40) 
where 1

mσ  is the first principal true stress of the matrix. Furthermore, by virtue of Tsai-Wu’s criterion,  
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a matrix failure is govern by 
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On the other hand, a fiber failure is detected using a generalized maximum normal stress failure 
criterion[3]. Namely, a fiber tensile failure is attained if 
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A fiber compressive failure is assumed when 
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In the above, lf )( 1σ , lf )( 2σ  and lf )( 3σ  ( 321
fff σσσ ≥≥ ) are the current three principal stresses of the 

fiber evaluated from  
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6  IllUSTRATION 
 

The interface crack angle, ψ, the transverse tensile SCF of the matrix after the crack, tK22
ˆ , and the 

critical transverse tensile load, 0
22σ̂ , of each of the 9 UD composites from Table 1 are calculated, and 

are shown in Table 4. The interface crack angles of all the 9 composites were close to each other, 
nearly equal to 720. For every composite, tK22

ˆ  is much higher than tK22 , as shown in Tables 3 and 4, 
explaining why the load carrying ability of a composite after an interface crack is decreased 
significantly.  
 

 E-Glass 
LY556 

E-Glass 
MY750 

AS4 
3501-6 

T300 
BSL914C 

IM7 
8511-7 

T300 
PR319 

AS  
Epoxy 

S2-Glass 
Epoxy 

G400-800 
5260 

ψ (0) 70.4 70.5 73.5 73.5 72.8 70.8 72.8 70.4 72.0 
tK22

ˆ  8.47 7.94 5.46 5.57 5.99 7.68 6.00 8.08 6.24 
0
22σ̂ (MPa) 22.50 30.08 37.65 4.10 60.96 27.59 15.81 61.43 78.89 

Table 4: Transverse tensile SCFs of the matrices in the 9 UD composites after interface crack 
 

Two UD composites, Kevlar-49 fiber/epoxy and E-glass fiber/8804 epoxy systems, were subjected 
to off-axial tensile loads up to failures. Constituent properties and transverse tensile strengths of the 
two composites together with fiber volume fractions were provided in [11-13], respectively, and are 
listed in Table 5. Using them, the calculated SCFs of the matrices and the critical transverse tensile 
loads of the composites are shown in Table 6. It is seen that at initial perfect bonding, the SCFs of the 
Kevlar system are close to 1. This is because the transverse modulus of the Kevlar fiber is comparable 
to that of the matrix. Nevertheless, the transverse tensile SCF of the matrix in the Kevlar system after 
the interface debonding is still significantly higher than that with a perfect interface bonding. As both 
the critical loads are smaller than the corresponding transverse tensile strengths, the two composites 
will undergo an interface debonding. However, the Kevlar system will be debonded much earlier.  
 

  E11(GPa) E22(Gpa) ν12 G12(Gpa) ν23 σu,t(MPa) σu,c(MPa) Y(MPa) 
Kevlar-49/epoxy 

Vf=0.55 
Fiber 124.1 4.1 0.35 2.9 0.35 2060 -  

27.7 Matrix 3.45 3.45 0.35 1.28 0.35 69 120 
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E-glass/8804 
Vf=0.51 

Fiber 71 71 0.26 28.2 0.26 1500 -  
45.3 Matrix 3.1 3.1 0.29 1.12 0.29 70 86 

Table 5: Original properties of two material systems[11-13] 

 
 tK22  K12 cK22  tK22

ˆ  0
22σ̂ (MPa) 

E-glass/8804 2.98 1.38 2.02 6.01 41.6 
Kevlar-49/epoxy 1.13 1.17 1.06 2.79 1.7 

Table 6: SCFs and critical transverse tensile loads 
 

The predicted and measured ff-axial tensile strengths of the two composites are plotted in Figs. 3 
and 4, respectively. In order to display the predicted results at most off-axial angles more clearly, the 
predictions at angles smaller than 100 are not shown. Three kinds of predictions have been made. One 
is done with a perfect interface bonding assumption, another is without any SCFs of the matrix taken 
into account, and the third is incorporated with the interface debonding. As expected, the predictions 
without any SCFs are far away from the experiments, whereas those with the interface debonding 
incorporated agree the best with the measured data. The perfect bonding assumption for both of the 
composites results in the predictions lied in between the other two kinds of predictions.    
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Figure 3: Comparison of different schemes’ predictions with experiments[14] (Pindera et al., 1986) for 

off-axial tensile strengths of a Kevlar-49/epoxy UD composite 
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Fig. 4. Comparison of different schemes’ predictions with experiments[12] for off-axial tensile strengths 

of a E-glass/8804 UD composite 
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7  CONCLUSION 
 

The SCF of the matrix in a composite with a debonded fiber/matrix interface has been derived in the 
paper. A straightforward result of this work is in correlating an interface debonding with an arbitrary 
load applied on the composite. Only a transverse tensile test on a UD composite made from the same 
constituents is necessary, in addition to the original mechanical properties of the fiber and matrix. 
More other benefits can be gained from this work in failure analysis of a composite. For instance, a 
prediction accuracy for a composite strength with a less perfectly bonded interface can be much more 
increased in accuracy only using the original constituent information. 

 
ACKNOWLEDGEMENTS 

Financial supports from the National Natural Science Foundation of China (Grant Nos. 11472192, 
11272238) are acknowledged. 
 

REFERENCES 

[1] Z.-M. Huang and L. Liu, Predicting strength of fibrous laminates under triaxial loads only upon 
independently measured constituent properties, Int. J. Mech. Sci., 79, 2014, pp. 105–129. 

[2]   Z.-M. Huang and L.-M. Xin, In-situ strengths of matrix in a composite, ACTA Mech. Sinica, 33, 
2017, pp. 120–131. 

[3] Z.-M. Huang and Y. X. Zhou, Strength of Fibrous Composites, Zhejiang University Press & 
Springer, Hangzhou, New York, 2011. 

[4]   S. Ryan, M. Wicklein, A. Mouritz, W. Riedel, F. Schäfer, K. Thoma, Theoretical prediction of 
dynamic composite material properties for hypervelocity impact simulations, Int. J. Impact 
Engng., 36, 2009, pp. 899–912. 

[5]   A. Shaw, S. Sriramula, P.D. Gosling, M.K. Chryssanthopoulos, A critical reliability evaluation of 
fibre reinforced composite materials based on probabilistic micro and macro-mechanical 
analysis, Comp. Part B, 41, 2010, pp. 446-453. 

[6]   P.D. Soden, M.J. Hinton, A.S. Kaddour, Composites Science & Technology, 58, 1998, pp. 1011-
1022; A.S. Kaddour and M.J. Hinton, J. Comp. Mater., 46, 2012, pp. 2295-2312; A.S. Kaddour, 
M.J. Hinton, P.A. Smith, S. Li, J. Comp. Mater. 47, 2013, pp. 2427-2442. 

[7]   J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related 
problem, Proc. Roy. Soc. A, 241, 1957, pp. 376-396. 

[8]   T. Hobbiebrunken, M. Hojo, T. Adachi, C.D. Jong, B. Fiedler, Evaluation of interfacial strength 
in CF/epoxies using FEM and in-situ experiments, Comp. Part A., 37, 2006, pp. 2248-2256. 

[9]   M. Toya, M., A crack along the interface of a circular inclusion embedded in an infinite solid, J. 
Mech. Phys. Solids, 22, 1974, pp. 325-348. 

[10]  A.H. England, An arc crack around a circular elastic inclusion, J. Appl. Mech. ASME, 33, 1966, 
637-640. 

[11]  J. Aboudi, Micromechanical analysis of the strength of unidirectional fiber composites, Comp. 
Sci. Tech., 33, 1988, pp.79-96. 

[12]  S. Mayes, C. Andrew, J. Hansen, Multicontinuum failure analysis of composite structural 
laminates, Mech. Compos. Mater. Struct., 8, 2001, pp. 249-262. 

[13]  P. Suppakul and S. Bandyopadhyay, The effect of weave pattern on the mode-I interlaminar 
fracture energy of E-glass/vinyl ester composites, Comp. Sci. Tech., 62, 2002, pp. 709-717. 

[14]  M.J. Pindera, Z. Gurdal, J.S. Hidde, C.T. Herakovich, Mechanical and Thermal Characteriza- 
tion of Unidirectional Aramid/Epoxy, CCMS-86-08, VPI-86-29, Virginia Polytechnic Institute 
and State University, 1986. 

 


	1 INTRODUCTION
	2 summary of bridging model
	3  scFs of the matrix under perfect interface bonding
	,                 (21.1)
	.         (21.2)
	Substituting Eqs. (21.1) and (21.2) into Eq. (20), one gets
	=0.       (22)
	Following EnglandP[10]P and ToyaP[9]P, the solution to Eq. (22) can be transformed into an equation for a phase angle to simplify the analysis. The solution to Eq. (22) is equivalent to that to the following condition (with (=(-()
	+(-.        (23)
	Let us consider different values attained by ( separately. When (<1, we have
	, >0，
	and . It follows that
	.
	This implies that Re(g)>0 and Im(g)<0, where g=. In other words,
	we have
	<0.                                                (24)
	Furthermore  (<0,                                                                        (25)
	since (>0. In light of Eqs (24) and (25), the right hand side of Eq. (23) should take -0.5(. Further simplification on Eq. (23) leads to
	f(()==0.   (26)
	In the last expression, the condition of sin(0.5()(0.5( and sin((-0.5()(sin(() has been used. As Eq. (26) or (f(()=0 (since (>0) represents the fact that the relative displacement of the fiber and matrix on the interface along a radial direction attai...
	=
	+=0,                                      (27)
	.                                          (28.3)
	From Eq. (27), one obtains
	(,   (29)
	because (<<sin(().
	If (>1, it follows that (=-ln(()/(2()<0. Thus, (<0. Physically, (=(-(>(, meaning that an oscillating point occurs outside the crack tip. In such a case, the condition that (f(() attains a minimum is no longer applicable. However, the function f(() its...
	=
	=0,                                      (30)
	which leads to
	Finally, (=1 implies (=0. Both Eq. (29) and Eq. (31) give (=0. Substituting it into Eq. (20) results in none unique solution for the crack angle (. Hence, (=1 corresponds to a singular crack. However, any practical measurement for the fiber and matrix...
	Substituting Eq. (29) or (31) into Eq. (20), a crack angle is obtained, and the transverse tensile SCF of the matrix with the debonded interface is determined from Eq. (19).
	Let a UD composite be subjected to a transverse tensile load, , up to an ultimate failure. The measured transverse tensile strength of the composite is Y. Suppose that the fiber/matrix interface of the composite is initially bonded perfectly. When the...
	By Bridging Model, the transverse stress in the matrix when the crack occurs reads
	.                                                      (32)
	Further, the longitudinal stress of the matrix at the critical load level is obtained as
	.                                                            (33)
	No other stress in the matrix exists. Supposing that the transverse matrix stress corresponding to the composite failure is denoted by , one has
	+,                                                                   (34.1)
	ACKNOWLEDGEMENTS
	REFERENCES

