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ABSTRACT 

Process monitoring is gaining increased attention in the field of fiber reinforced plastic manufacturing. 

One of the vital aspects hereby is the control of the curing degree of the components, in order to 

ensure the  quality of the composite. In this work dielectric analysis (DEA) as an online-capable 

monitoring system is investigated in comparison to standard thermo-physical and rheological 

measurement techniques. Therefore, a pultrusion-grade two-step curing hybrid thermoset matrix was 

analyzed using DEA as well as rheometry and differential scanning calorimetry (DSC). The 

measurements were performed under dynamic temperature profiles (constant heating rates of 0.5, 1 

and 5 K/min) in the range of -20 to 185 °C. A good qualitative correlation was found for both reaction 

steps between the shear viscosity measured by oscillated parallel plate and electric-based ion viscosity 

detected by DEA. The observed reaction steps were confirmed with DSC measurements. By fitting 

measured data of different heating rates, kinetic models for DEA, DSC and rheology were developed, 

allowing the prediction of the curing degree under varying process conditions. The models were 

finally validated through various temperature profiles, proving good agreement between measured and 

predicted data.   

  

 

1 INTRODUCTION 

Carbon fiber reinforced plastics (CFRPs) can be manufactured by a number of different processes, 

depending on permissible cycle times, component design and application. In this respect, the 

pultrusion process (as illustrated in Figure 1) is one of the most well established technologies for the 

production of continuous fiber reinforced profiles, due to its high potential for automation and cost 

saving.  

In a common pultrusion process unidirectional fiber, braided or woven strands are impregnated with 

resin and pulled through a heated stationary die, where the resin undergoes polymerization. The die 

cavity can have different geometries, varying from simple flat to cylindrical T- or H-profiles. [1] A 

modification of the pultrusion process, however, targets the use of this principle as a pre-forming stage 

only. In this case the impregnated but still uncured material is further transferred to a subsequent 

forming station (for example blow molding), as illustrated in Figure 1. For this purpose a two-step 
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curing system is of great benefit, where a rubber-like B-stage is reached at the end of the pultrusion 

die. At this condition, the resin is able to stabilize the geometry, but still allows further post-forming to 

a more complex shape. During this second forming step the resin system is again triggered by heat 

leading to complete cross-linking and thus curing. 

 

 

Figure 1: Pultrusion process chain. 

The reaction steps take place in the pultrusion die (B-staging urethane) and in the blow molding 

tool (radical polymerization). In order to find the optimal processing parameters for the production of 

high quality components, shear viscosity (a crucial parameter influencing fiber wetting), as well as 

temperature and time dependent curing behavior have to be known. Such information is commonly 

obtained using the thermo-physical differential scanning calorimetry (DSC) technique and rheology. 

Recently, the dielectric measurement principle has been explored for cure characterization. This 

technique offers a great potential not only for laboratory research but also as an online monitoring 

system [2-4]. Maazouz et al. [5] have reported the appropriateness of the dielectric measurement 

technique for the detection of the chemorheological behaviour of polyurethane and unsaturated 

polyester. Good agreement with rheological and DSC measurements was observed. [5] 

The dielectric measurement principle is based on the penetration of a material using a specific 

voltage U and the detection of the response signals in terms of the current I and the corresponding 

phase shift . Assuming an electrical equivalent circuit with a resistor Rp and a capacitor Cp in parallel 

(describing the investigated sample) the ion viscosity  is given according to ASTM D150 by 

𝜌 =  
𝑅𝑝 𝐴

𝑑
 , (1) 

where 

𝑅𝑝 =  
𝑈

𝐼 𝑐𝑜𝑠𝜑
 . (2) 

A/d is a geometrical ratio for the one-sided sensor determined using ASTM D150 analogue to a 

parallel plate capacitor. 

For rheological measurements the dynamic shear modulus (storage modulus G’ and loss modulus 

G”) is obtained to calculate the complex viscosity ƞ* [6]: 

 

ƞ' = G" /  (3) 

 ƞ" = G' /  (4) 

ƞ* = ƞ' + i ƞ" , (5) 

|𝜂∗| = √𝜂′2 + 𝜂"2 . (5) 
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is the applied angular frequency in rad/s. According to the Cox-Merz rule, the complex viscosity 

agrees relatively well with the apparent viscosity of viscoelastic materials for low shear rates [7]. 

 

 

2 EXPERIMENTAL 

Material. For the purpose of this study the Daron ZW 015864 (DSM Composite Resins, Zwolle, 

NL) two-step-curing resin is used. The resin consists of six different components including the resin 

itself (which is in turn diluted in styrene) premixed with an inhibitor for the second reaction step, a 

catalyst, internal mould release, a di-isocyanate (MDI) and organic peroxide as initiator of the second 

reaction step. The first reaction between isocyanate and hydroxyl functional groups, which are still 

present in the resin backbone, results in the formation of polymer chains by urethane linkage at 

elevated temperatures. This is the step from a liquid resin system to a reacted-stage matrix. The second 

step, the irrevocable cross-linking, is initiated by subjecting the material to even higher temperatures. 

Here, cross-linking of these polymer chains and styrene takes place  based on a radical polymerization 

initiated by the organic peroxide. 

 

Dielectric Analysis. Dielectric measurements were conducted using a DEA288 from Netzsch-

Gerätebau GmbH (Figure 2 - a). For electric field application and response detection a tool-mountable 

re-usable sensor with a radial arrangement and a line spacing of 500 µm was used (Figure 2 - b). 

 

  
(a) (b) 

 

Figure 2: (a) Netzsch DEA288 and (b) tool-mountable sensor. 

This sensor type is advantageous due to its one-sided measurement allowing easy integration into 

manufacturing tools (here: into the blow mold tool following the pultrusion process). For the material 

analysis purpose of this study the sensor (embedded in a metallic holder) was placed into a small 

laboratory furnace from Netzsch-Gerätebau GmbH. The uncured resin system was applied onto the 

surface of the tool-mountable sensor with a layer thickness of about 1 mm. 

To investigate the curing behaviour a heating run was carried out at rates of 0.5, 1 and 5 K/min in 

the range of -20 °C – 185 °C under nitrogen atmosphere. Dynamic cooling was then performed at a 

rate of 5 K/min, and the obtained data was further analysed to make sure that no subsequent reactions 

take place. The applied frequencies were varied between 1 Hz and 1 MHz with four frequencies in 

each decade. For analysis and kinetic modelling the 20 Hz signal of the ion viscosity  is used. 

 

Differential Scanning Calorimetry. Calorimetric measurements were performed with a Netzsch 

DSC204 F1 Phoenix following the same heating and cooling procedures used for the dielectric studies 

under inert nitrogen atmosphere. The samples (mass between 16 – 18 mg of formulated resin) were 

placed into aluminium pans with pierced lids (75 µm hole). 

 

Rheology. Oscillating rheology measurements were conducted using an MCR301 rheometer from 

Anton Paar GmbH, equipped with a parallel plate setup. The temperature was varied between 20 °C –

180 °C at rates of 0.5, 1 and 5 K/min while the system was under a controlled normal force of zero N 
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and the gap was constantly adjusted during the measurement. The oscillation frequency was set to 1 

Hz and the strain to 0.2 % (corresponding to a deflection angle of 0.16 mrad). 

 

Kinetic modelling. Kinetic models were developed using Netzsch Kinetics. Based on the different 

constituents of the resin system, a three-step reaction path was chosen as indicated in Equation 3. 

𝐴 
1
→  𝐵 

2
→  𝐶 

3
→  𝐷 , (3) 

Path 1 describes an autocatalytic reaction of initial chain formation followed by paths 2 and 3, 

involving subsequent autocatalytic and n-th step reactions of irrevocable network formation, 

respectively. The kinetic model describes the temperature dependent reaction rate as per Equation 4. 

𝑑𝛼

𝑑𝑡
= 𝑊(𝑇) ∙ 𝑓(𝛼) . (4) 

W(T) is conversion rate and f() is the mathematical description of the reaction mechanism. For 

this model the conversion rate is supposed to underlie an Arrhenius behavior. Thus, it can be described 

as 

𝑊(𝑇) = 𝐴 exp (
−𝐸𝐴

𝑅∙𝑇
) . (5) 

EA is the activation energy of the reaction, R is the universal gas constant, T the temperature and A 

describes the collisions per minute between molecules and thus functions as a fitting parameter in 

terms of the probability of reaction initiation. Although it is known that this collision factor is 

temperature dependent, the influence on the kinetic model is much lower in contrast to the exponential 

temperature effect in the Arrhenius equation. The used mathematical models for the reaction 

mechanisms are given by Equations 6 and 7. 

 

 n-th order: (1 − 𝛼)𝑛
 , 

 

(6) 

 n-th order with autocatalysis: (1 − 𝛼)𝑛(1 + K𝛼) , 
 

(7) 

where K is the catalytic factor. 
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3 RESULTS AND DISCUSSION 

The discussion is divided into two complementary sections. First, the outcomes of the DEA, 

rheological and DSC measurements in comparison to each other are discussed. Later on the fractional 

reaction as defined by DEA and DSC kinetic models is presented. Correlations between the kinetic 

models of DSC and DEA are discussed. 

 

3.1 Study of the curing behavior using DEA, Rheology and DSC 

The effect of increasing temperature at various heating rates on the curing behavior of the Daron41 

resin system is presented in Figure 3. The reaction behavior is accompanied by variations in ion 

viscosity , shear viscosity  and heat flow as observed using DEA, rheometry and DSC, respectively. 

It is to be noted that both ion and shear viscosities are presented in logarithmic values, whereas the 

heat flow is given in a linear scale. Both chain formation as well as final cross-linking can be clearly 

associated with either a peak (exothermic reaction in DSC) or a step (viscosity in DEA or rheometer). 

As expected all three techniques show the common trend that increasing heating rates shift the 

chain formation as well as cross-linking to higher temperatures . This is often associated with a 

thermal retardation of the sample at higher heating rates, which delays the material’s reaction. 

Therefore, the material responds later, which is seen in terms of higher reaction temperatures. 

 

Chain formation. The first chain formation reaction can be observed at low temperatures around -

10°C to 100 °C for the various heating rates. However, this representation does not allow a precise 

identification of the reaction stage, especially in case of DEA and rheology. This is attributed to the 

reaction steps associated with these techniques, where an overlap of contrary effects takes place. On 

the one hand, shear viscosity   and ion viscosity   increase because of the chain formation, whereas 

on the other hand, signals decrease based on higher mobility at elevated temperatures. Therefore, the 

first derivative of both of the viscosity  data sets is presented in Figure 4. Here the reaction region can 

be determined between -10 and 100 °C at the low heating rate of 0.5 K/min, in contrast to -10 and 110 

°C at 1 K/min and finally -10 to 120 °C at 5 K/min. This is comparable to the temperature intervals 

detected in the heat flow. In general however, the results show that shear rheology detects such phase 

changes at higher temperatures in contrast to observations made via DEA and DSC. This can be 

attributed to the different physical measurement principles. 

 

Cross-linking. In contrast to the first chain formation reaction, the second curing reaction can be 

well depicted in Figure 3. In the DSC-signal, cross-linking is visible as an exothermic process, which 

can be correlated to an increase in both ion and shear viscosities. All three measurement techniques 

show network formation within the same temperature range between 100 and 120 °C for 0.5 K/min, 

100 and 130 °C for 1 K/min and 120 to 150 °C for 5 K/min. The use of the derivative representation in 

Figure 4 confirms these observations. It becomes obvious that the reaction peaks overlap. Similar to 

the first reaction step, the increase in heating rate causes a delayed reaction, which is shifted towards 

higher temperatures. 

Furthermore, Figure 4 shows that the DSC signal ends in the expected linear baseline, denoting the 

end of reaction. The ion viscosity is continuously decreasing after the end of the reaction. This is 

related to the increasing mobility of the chains, free ions and charges. In contrast to ion viscosity, the 

shear viscosity shows the expected constant value after curing and a small decrease to another plateau 

in the range of the glass transition.  The subsequent noisy signal is caused by crack formation between 

the rotating rheometer plates and the sample surface and can be neglected. The hardening of the resin 

takes place in the same temperature range as can be seen in the signals of DEA and DSC. For 

0.5 K/min between 100 and 120 °C, for 1 K/min between 110 to 130 °C and 5 K/min between 130 and 
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145 °C.  

Figure 3a: 0.5 K/min. 

 

Figure 3a: 0.5 K/min. 

 

Figure 3a: 0.5 K/min. 

Figure 3: Comparison of ion viscosity , shear viscosity  and heat flow. 
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Figure 4a: 0.5 K/min. 

 

Figure 4b: 1 K/min. 

 

Figure 4c: 5 K/min. 

Figure 4: Comparison of heat flow and derivatives of ion viscosity  and shear viscosity . 
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Table 1 represents characteristic values for onset-, end- and peak-temperatures for all three 

measurement techniques, DSC, DEA and rheology, regarding both chain formation as well as cross-

linking reactions. These data are based on the analysis of Figure 4. The onset is typically defined as 

the point of intersection of two tangents, one at the inflection point during the reaction and the other at 

the linear baseline, denoting start and end of reaction, respectively. The peak is determined at the 

highest value within the reaction stage. A manual four-point determination of onset- and end-

temperatures had to be performed because the derivatives of shear viscosity and ion viscosity are 

sometimes too noisy for automated analysis. 

0.5 K/min 

 
chain formation [°C] cross-linking [°C] 

onset peak end onset peak end 

DSC -2.94 18.75 46.93 103.94 108.17 111.00 

DEA -2.63 32.26 57.25 104.87 112.73 119.13 

Rheolog

y 
30.41 39.17 55.23 102.84 104.16 107.91 109.29 

1 K/min 

 
chain formation [°C] cross-linking [°C] 

onset peak end onset peak end 

DSC 6.00 29.91 56.48 113.03 115.94 119.78 

DEA -1.88 30.67 56.28 103.30 102.31 110.14 114.53 

Rheolog

y 
42.43 52.92 69.60 111.76 113.58 118.83 120.75 

5 K/min 

 
chain formation [°C] cross-linking [°C] 

onset peak end onset peak end 

DSC 1.91 50.23 88.15 128.97 133.28 138.20 

DEA -1.12 45.45 72.05 123.03 129.99 135.97 140.99 

Rheolog

y 
31.61 55.42 85.83 99.94 131.62 136.67 141.17 

Table 1: Characteristic temperatures for chain formation and cross-linking. 

Especially the values for onset and end of the two reaction step correlate very well between DSC and 

dielectric data.  

Closer observation of the rheology data shows that the onset and peak of both reactions is shifted to 

higher temperatures. This can be related to the disturbance of both chain formation and cross-linking 

due to the oscillatory motion of the rheometer. Only the end value lies in a reasonable interval 

compared to values determined by DSC and DEA. 

 

3.2 Kinetic Modelling 

Based on the above presented DSC and DEA data, kinetic models for the prediction of resin 

behavior under different process conditions, were derived. Figure 5 shows a theoretical temperature 

profile and the corresponding DEA and DSC kinetic fractional reactions. The term fractional implies 

the extent of reaction advancement and directly correlates with the degree of cure. It can be seen that 
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there is a direct relationship between the fractional reactions observed with both DSC and DEA, 

whereas the exothermic heat generated during polymer chain growth has a larger impact on the total 

enthalpy of DSC in contrast to the motional limitation of the ion viscosity. The begin of the curing 

reaction after about 17 minutes is almost the same in both cases. A difference can be seen at the end of 

the curing where both DSC and DEA run into a horizontal plateau. The fractional reaction of the DEA 

shows a polymerization of nearly 100 % whereas DSC measurements indicate a degree of 95 %. After 

the initial cross-linking the slope in the DSC model is higher compared to that of the dielectric 

simulation. This can be caused by the comparison of absolute measurement data of the DSC in 

contrast to relative data of the dielectric analysis. 

 

 

Figure 4: Kinetic determination of the fractional reaction for DEA and DSC for a specific temperature 

profile (continuous line). 

 

 

Figure 6: Fractional reaction for isothermal temperatures between 70 °C and 150 °C calculated by 

DSC-kinetics. 

Fehler! Verweisquelle konnte nicht gefunden werden. demonstrates the effect of time on the 

fractional reaction at different isothermal temperatures within the range of 70 °and 150 °C. As 

anticipated it can be seen that the second reaction cannot be initialized at temperatures below 100 °C 
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even at prolonged heating times of up to 60 minutes. The reason for this is the presence of the inhibitor 

that prevents network formation. Above 100 °C the inhibitor is decomposed and the curing reaction 

takes place. 

 

 

4 CONCLUSIONS 

The pultrusion process but especially the post-forming of pultruded profiles needs a perfectly 

adapted resin system to ensure the high performance of the composite system. Therefore, a two-step 

curing polyurethane based resin was used. For a deeper understanding of the behavior of this multi-

component mixture, a comprehensive thermo-physical examination was conducted. Additionally, 

measured data were modelled to be able to predict processing behavior with different parameters and 

to adjust these for a faster and more reliable manufacturing process. 

The above results show that the dielectric analysis provides similar outputs to those measured by 

standard thermo-physical DSC equipment. However, it is the only measurement technique that can be 

used online Laboratory results and the correlation of DSC, DEA and rheology measurements 

demonstrate that the curing stage of the resin system under investigation can be successfully 

determined by any of the three techniques. Derived ion viscosity of online-capable DEA 

measurements show almost the same behavior and curve shape compared to the heat flow measured 

with DSC. The shear viscosity reveals an increase during network formation within the same 

temperature range as detected by DSC and DEA, whereas the increase of the polymer chain growth is 

shifted towards higher temperatures compared to ion viscosity and heat flow.  
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