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ABSTRACT 

A damage growth problem of nonlinear laminated plates subjected to a transverse concentrated 
load is analytically solved to estimate the significance of damage due to low velocity foreign object 
impact. The damaged portion is modelled as equally spaced multiply delaminated plates. A 
superposition technique is used to derive an approximated relation between the load and deflection. 
The first problem is a basic one, that is, a slightly nonlinear response of an intact global plate without 
damage pushed by a concentrated load at its center. The second problem is that of a nonlinear response 
of piled circular plates with the average radius and the thickness of the delaminated ligaments loaded 
by an equivalent force to the reduced bending stiffness due to the introduction of the damage. The 
periphery of the delaminated plate is assumed fixed, considering that the bending stiffness of the intact 
portion is much higher than the delaminated portion. Some nonlinear effect of the first problem is 
considered by introducing initial inplane stress caused by an equivalent relative displacement of the 
damaged portion of the first problem. The results are compared with finite element solutions and 
showed excellent agreement.  
 
1 INTRODUCTION 

Composite laminates having weak interfaces compared to their superior inplane performances 
are vulnerable to damage due to local bending when subjected to transverse impact and transverse 
concentrated loads [1, 2]. The damage causes significant compressive strength reduction even when the 
damage is in a barely visible state (CAI) [3-6]. There are a number of numerical and/or experimental 
works to study impact damage problems of laminated composites due to its importance in the design 
of aeronautical structures [6-12], such as the relation between the damage and impact energy (or the 
impact force), scale effects, interlaminar toughness, stacking sequence, coupling between the 
delamination and matrix cracks, etc.  

It is very helpful to estimate the various effects of material and structural parameters on impact 
damage problems of the composite laminates by some closed form expression. However, a limited 
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number of such analytical works on the topic have been reported due to the geometrical complexity 
and its nonlinear nature. Suemasu and Majima obtained a closed form solution on the delamination 
propagation and quasi-static concentrated force for the linear problem [13] and Rayleigh-Ritz 
approximated solution for the nonlinear problem [14]. It is shown that large nonlinear effect must be 
considered to predict the impact damage. Olsson [15] obtained an analytical expression by separately 
considering bending and membrane components based on a similar idea to the present analysis. 
Suemasu et al. proposed a simple mathematical expression to estimate the significance of the impact 
damage in terms of impact load and impact energy [16] 

A simple and more accurate form of the energy release rate is given for nonlinear plates in terms 
of applied force, damage size and various geometrical and material parameters in the present paper. 
Then, the solution is compared with finite element solutions to demonstrate the applicability of the 
present theory to the real problem. 
 
2 ANALYSYS 

Low velocity and large mass impact response may be replaced by a quasi-static concentrated load 
problem [16]. The load-displacement history of the impact damaged plates can be well expressed by 
that of the plate with an equivalent number of equally spaced multiple circular delaminations. In the 
present paper we consider circular quasi-isotropic laminates of radius R and thickness h fixed at their 
boundary. When the plate with the N-1 multiple circular delaminations of radius a is loaded at its 
center as shown in Figure 1(a), the delaminated portion deforms significantly and shows very large 
nonlinearity and the deflection of the intact portion is usually small and slight nonlinearity occurs. 
Introduction of N-1 multiple delaminations makes the damaged portion into N equal thickness 
ligaments and the bending stiffness reduce to 1/N2. But membrane stiffness reduction by introduction 
of the multiple delaminations is negligible. A concentrated load P is applied at its center as shown in 
Figure 1(a). The approximated response can be given by superposing three problems (b), (c) and (d). 
The sum of the applied load of three problems is same as that of problem (a).   

 

   
Figure 1:  A circular plate with multiple circular delaminations subjected to a concentrated load at 

its center can be expressed as a Superposition of three problems 
 

In the problem (b) a distributed shear stress is assumed at the delaminated surface which is equal 
to the shear stress existing at the corresponding interfaces in the intact plate. The solution of the 
problem (b) is same as that of the intact plate (b'). In the problem (b) the applied load can be expressed 
as a sum of bending linear term Pb and membrane nonlinear term Pm. The second and the third 
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problems are piled N circular panels fixed at the delamination boundary. The opposite direction same 
magnitude loads are applied for the Problems (c) and (d). All the delaminated ligaments are assumed 
to deflect together. Since membrane stiffness is unchanged due to the introduction of the multiple 
delaminations, the necessary load to produce same deflection as the intact plate reduces same rate as 
the bending stiffness reduction. The load corresponding to bending stiffness reduction ∆Pb is written 
as 

bb
d

bb PP
D

NDPP ′−=







−=∆

0
1     (1) 

where Pb is the linear bending term of the load and D0 and Dd are the bending rigidities of intact and 
delaminated ligaments, respectively. When the plate is homogeneous, Dd = D0/N 3. In problem (c) an 
opposite sense shear stress to that of problem (b) is given at all the delamination surfaces. Linearized 
solution of this problem causes no deflection at the loading point. No constraint is assumed at the 
delaminated surface for problem (d). Then, we need only solutions of the load displacement relations 
of the two nonlinear plate problems, that is, a global base plate (b') and a thin delaminated plate (d').  

The following relationship between a nondimensinal load p0 and a normalized displacement q0 can 
be obtained for an intact plate [16]. 

     p0 = q0 + kq0
γ      (2) 
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The coefficients of the nonlinear term k and γ generally depend on the boundary conditions and shape 
of the plate and can be numerically determined. When the deformed shape does not change during the 
deflection, the parameter γ  is equal to three.  

As explained before, the boundary of the local additional deformation shown in Figure 1(d') can be 
assumed to be fixed. Then, same relation as Eq.2 between a nondimensional local load p and a 
normalized local displacement q can be derived when the effect of the global displacement is 
negligible.  

     p = q + kqγ       (4) 
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Since the additional displacement starts from the globally deformed condition as shown in Figure 2, 
the effect of this condition must be incorporated in the load displacement relation. The effect may be 
assumed that the additional displacement start from an equivalent state s and the additional normalized 
load p is given by the following equation. 

       ( ) ( ){ }γγ ssqkqsqgp −++== ,      (6) 

The equivalent initial normalized displacement s must be a function of the global normal displacement 
q0. It is not clear how to determine the relation between s and q0. In the present paper we determine to 
use the normalized rise tδ~  of the expected damaged portion, that is, the relative displacement from 
the damage boundary to the centre of the intact plate (Problem b') as illustrated in Figure 2. Then, 
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t
s δ~

=         (7) 

where 
arr == −= ||~

000 δδδ  
This assumption could express sufficiently well the nonlinear relationship between the load and 
displacement of the damaged plates [16]. If the deformed shape of the plate changes little during the 
loading (the nonlinearity is mild), the linear solution of the plate [12] can be used and the local rise of 
the circular plate fixed at its boundary is written as  

    ( )ααδ log21
~

2
0 −== Nq

t
s      (8) 

where α=a/R is normalized radius of the delaminations. 

   Since the applied load P consists of the linear bending component Pb and the nonlinear inplane 
component Pm, the bending load reduction ∆Pb can be given as a linear function of global normal 
deflection q0 as 
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The normalized local load p due to the bending stiffness reduction is derived as a linear function of q0 
as 
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where the same normalizing rule is used as the global case 
The relation between the local and global displacement is obtained by substituting Eq.10 into Eq.6.  

( ){ } ( ) 0
22 1 qNNssqkq αγγ −=−++     (11) 

 
 

 
  

Figure 2:  Local model of damaged portion.  
 

      When the size of the damage is constant, a stored complimentary energy is obtained by integrating 
the displacement δ of the loading point by the applied load P. 
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The total displacement of the loading point δ is a sum of the global displacement δ0 and local 
displacement δ1 and 
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Considering Eq.2, the complimentary energies ΠC0 and ΠC1 are written as 
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where the local displacement q is a function of q0 and the damage size α. As ΠC0 is independent of the 
damage size α, the energy release rate of uniform simultaneous growth of all delaminations can be 
given by differentiating the energy ΠC1 with respect to delamination area.  
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Differentiating both sides of Eq. 6 by α under the condition P=constant, the following relation is 
derived after some manipulations. 
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Substituting Eq.14 into Eq.13 yields a normalized energy release rate Γ as 
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The value Γ can be derived by integrating Eq.15 numerically. The normalized energy release rate Γ is 
a function of q0, that is, the applied load p0 since q and s are functions of q0. The equilibrium path of P 
and δ when Γ = Γcr can be obtained numerically with increasing the parameterα.  

When the nonlinear terms is neglected, the present solution coincides with the theoretical solution 
given in the reference [13].  
 

3. RESULTS AND DISCUSSIONS 

Nonlinear relation between the applied load and the center deflection is shown in Figure 3 for a 
circular thin isotropic fixed plate. The thick line is the FEM result. The FEM result is well fitted by a 
power form equation (k=0.425 and γ=2.8), while the cubic polynomial cannot agree well the curve at 
highly nonlinear portion. The following analyses are conducted by using the values k=0.425 and γ=2.8. 

 

 
 

Figure 3: Nonlinear Relation between the load and deflection for the fixed circular plate 
 

The relationships between the nondimensional applied load p0 and the normalized deflection δ/h 
are plotted in Figures 4 and 5. In the Figure 4, the solutions obtained by neglecting the equivalent 
initial normalized displacement s are also shown to indicate that its effect on the solution is significant. 
The present solution considering the equivalent initial normalized displacement s showed good 
agreement with the finite element solution for both cases N=4 and 8 even for large α (=0.4). Though 
the present definition of s is not rigorous, the relationship between the load and the additional 
displacement can be sufficient to obtain the rough estimate of the damaged plate response. To obtain 
more physically reliable solution, the effect s must be obtained based on a rigorous mechanical 
development and Eq.6 shall be refined. In Figure 5 the solutions of the present expression are 
compared with a solution based on the cubed power assumption [16] when N=8. The results show 
strong nonlinearity even when the normalized load p0 is small. The present solution agrees very well 
with the finite element results for this nonlinear level, while the former results based on a cubed power 
equation depart from the finite element solutions at highly nonlinear region as expected. The most 
serious point of the solution is that the deflection of α=0.4 becomes smaller than that of α=0.2 when 
p0 exceeds 3.5. Owing to the effect, the energy release rates derived at this region becomes negative. 
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Figure 4: Load-deflection relationship of a plate of N=4. The solutions neglecting the effect of initial 

inplane effect s are also plotted by blue lines. 
 

 
 

Figure 5 Load-deflection relationship of a plate of N=8. Solutions based on a cubic power 
approximation of the nonlinear term are also shown by red lines to indicate the effect of the 
value of the power γ 

 
The square root of the nondimensional energy release rate Γ  is plotted against the applied load 

for several cases of α when N=4 and 8 and compared with a finite element results in Figures 6 and 7. 
The present results excellently agree with the finite element solutions for a wide range of the load. The 
present analysis is appropriate to evaluate the stability of delaminations during the indentation loading. 
The larger the delamination radius α is, the less the energy release rate increase with the load becomes.  
This tendency is more obvious when the delamination number N is large. It is because the membrane 
term becomes dominant with the increase of delamination size and number and the effect of the 
delaminations growth on the stored energy release rate decreases. It means that the load must be 
increased to keep the delaminations to grow. The results showed that the initiation of the delamination 
occurs at lower load when number of delamination is more but the load must be increased rapidly to 
keep the delaminations to grow when N is large. 
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Figure 6 Relationships between the load and square root of the energy release rate for N=8. 

 

 
Figure 7 Relationships between the load and square root of the energy release rate for N=8. 

 
The load – deflection histories obtained under the condition that the delamination propagate 

when Γ=Γc are plotted for N = 4 and N = 8 in Figures 8 and 9, respectively. The dotted thin lines in the 
figures are the equilibrium paths of intact panel and fully delaminated panel. The equilibrium points of 
damaged panels locate between the two dotted lines. The present results may not be very accurate 
when the damage size α exceeds 0.5 considering its assumption. The load increases with the deflection 
and also with the damage size. The damage starting load is nearly proportional to ( )1+NcrΓ , that is, 
the critical load for N = 4 is almost 34.153 ≈  times larger than that of N = 8. However, the load must 
be rapidly increased for N=8 to keep the delamination to grow. So, the necessary load for N=8 
becomes higher than that for N = 4 when normalised displacement increases without plate breakage.  

As the applied energy equals the area below the load-deflection curve, the total damage area can 
be given as a function of the applied energy, that is, the low velocity impact energy. The total 
delaminated areas are plotted against a consumed energy in Figure 10. Total delamination area is 
roughly proportional to the critical interfacial toughness. With the increase of the applied energy, the 
total area of the delaminations increases linearly and then decelerated due to the decrease of the 
bending effect in the deformation.   
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Figure 8: Relationships between the deflection and the applied force when the delamination growth 
occurs under constant fracture resistance for N =4. 

 

 
Figure 9: Relationships between the deflection and the applied force when the delamination growth 

occurs under constant fracture resistance for N = 8. 
 

 
Figure 10 Relationships between the applied energy and the total delamination area. 
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4. CONCLUSIONS 

       An analytical solution is proposed for the impact damage problem, where the energy release rate 
for the simultaneous growth of multiple circular delaminations is given as an integral form of applied 
displacement. The solutions agree well with finite element results. The expression can be used for the 
rough estimate of the significance of impact damage in terms of applied energy, interlaminar 
toughness and dimensions of the laminates. The effect of stacking sequence may be taken into account 
from the number of the delaminated ligaments N in the thickness direction. 
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