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ABSTRACT

The macroscopic properties of open cell foams are highly influenced by the foam’s microstructure.
Recent research has shown that the complex functional behaviour of foams can be studied by an exact
characterisation of their microstructure followed by numeric simulations. The key element of such studies
is the microstructure model of the foam. Models from stochastic geometry in conjunction with X-ray
computed tomography have turned out to be powerful tools in this context.

We focus on the realistic reproduction of the foam’s microstructure in a model. Using various geo-
metric characteristics of the cell and strut system, we propose a two step model fitting procedure: First,
a Laguerre tessellation model is fitted to the cell system of the foam. In the second step, we estimate
the local thickness of the foam’s edge system and fit a polynomial model to describe the locally varying
thickness distribution. The edge system of the tessellation is then adaptively dilated using the polynomial
model as size map to form the struts of the foam.

The elastic properties of the resulting microstructure model are evaluated using an iterative FFT-based
algorithm. By comparing the effective material properties of the real foam and its model, we found the
response of the model in very good agreement with the real foam. These findings support the supposition
that exact microstructure models play a vital role in the study of the functional behaviour of foams.

1 INTRODUCTION

In the recent years, the combination of quantitative image analysis, stochastic microstructure mod-
elling and numerical prediction of macroscopic properties has been established as powerful means to
gain an understanding of the complex relations between a material’s microstructure geometry and its
macroscopic behaviour. Once a model has been fit to the observed microstructure, variation of the model
parameters allows for the generation of new model realisations with modified microstructure characteris-
tics. This opens the road to a virtual design of materials for particular fields of application. In the present
paper, we will demonstrate these techniques on the example of an open cell foam.

The main step in this procedure consists in fitting a random tessellation to the cell system of the foam.
One of the most well-known tessellation models is the Voronoi tessellation. It is generated by a locally
finite set φ = {x1, x2, . . .} ⊆ Rd by assigning to each point x ∈ φ the set C(x) of those points in space
having x as nearest neighbour in φ. However, the Voronoi construction with cell facets being equidistant
from the generators of their cells is quite restrictive for the range of cell patterns which can be realised
by Voronoi tessellations. More flexible models are obtained by weighted generalisations.
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Model

Property Sample Mean Dev. [%]

V [mm3 ] Mean 54.12 54.07 −0.10
SD 9.97 10.24 +2.66

S [mm2 ] Mean 85.01 76.88 −9.56
SD 10.32 8.98 −12.00

b̄ [mm ] Mean 5.26 5.15 −2.12
SD 0.30 0.40 +33.75

n32
Mean 13.92 14.24 +2.32
SD 1.45 1.54 +5.58

Table 1: Deviation between geometric characteristics of the cell model and the scaled foam cells.

Laguerre tessellations are particularly suitable for modelling the cell systems of foams. The points of
φ are assigned positive weights such that each pair (x, r) ∈ φ can be interpreted as a sphere with centre x
and radius r. Then the Laguerre cell of (x, r) ∈ φ is defined as

C((x, r), φ) = {y ∈ Rd ∶ ∣∣y − x∣∣2 − r2 ≤ ∣∣y − x′∣∣2 − r′2, (x′, r′) ∈ φ} . (1)

If all radii are equal, the special case of the Voronoi tessellation is obtained.
In the following we study an open cell copper foam of dimensions 250mm × 25mm × 25mm. Its

microstructure is analysed using micro computed tomography (μCT), for which we cut a cube with an
edge length of 25mm from the rod, resulting in an image of 630 × 630 × 630 voxels with an isotropic
edge length of 38.15 μm. The presented results revise and extend the work done in [1, 2], see also [3,
Chap. 7].

2 MODELLING THE CELL SYSTEM

To fit amodel to the cell system of the foam, empirical distributions of cell size and shape are necessary.
These characteristics are estimated from the μCT image of a foam using the cell reconstruction procedure
described in [4]. If parametrised properly [3, Sec. 3.3], this procedure divides the pore space of the foam
into cells whose edges coincide with the foam’s strut system. For the modelling we then interpret the
reconstructed cell system of the foam as a realisation of a stationary and isotropic random tessellation,
that is, a random tessellation whose distribution is motion invariant.

In practice, however, real foams are often anisotropic along the rise direction. To deal with this
anisotropy, the cell system of the foam is rescaled such that the mean Feret diameters of the cells along
the three coordinate axes are equal. Subsequently, an isotropic model is fitted to the scaled cell system.
Reverting the scaling then yields a model for the observed cell system of the foam.

The cells of real foams show a high degree of regularity. A model that is able to reproduce this
regularity is a Laguerre tessellation generated by a dense random system of nonoverlapping balls. Besides
their innate regularity these models have the advantage that each Laguerre cell completely contains its
generating ball. Consequently, the volume distribution of the cells in the model is controlled, to a certain
degree, by the volume distribution of the balls (see e. g. [5, Fig. 3]).

The deviation of the model from the real foam is defined by the relative Euclidean distance [6], i. e.

d(c, ĉ) =

¿
ÁÁÀ

n
∑
i=1
( ĉi − ci

ĉi
)
2
, (2)

where the entries of ĉ = (ĉ1, . . . , ĉn) and c = (c1, . . . , cn) denote suitable geometric characteristics of the
cells of the observed foam and the model, respectively. These characteristics are estimated from the μCT
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Figure 1: Plot of the thickness profile for the shortest (foreground points, yellow), medial (interme-
diate points, red), and longest (background points, blue) 10% of the struts normalised by p(0 ∣ ℓ)
and ℓ. Polynomials were fitted using weighted least squares.

image of a foam after reconstructing the foam cells as mentioned above. In our study we use the means
and standard deviations of the cell volume V, the surface area S, the number of faces n32, and the mean
breadth b̄ [7].

If a parametric model, i.e. an algorithm for generating the ball packing and a parametric distribution
for the volume distribution of the balls, is fixed, there will typically be two free parameters: the packing
fraction τ and the coefficient of variation c of the volume distribution. These parameters can be estimated
by minimising Equation (2) using a Monte Carlo simulation. An alternative approach was presented in
[5], where Laguerre tessellations of dense ball packings with lognormally and gamma distributed volumes
were generated for various packing fractions τ and coefficients of variation c. Subsequently, polynomials
in c were fitted to the estimated geometric characteristics for each value of τ. With these results the
minimisation of Equation (2) reduces to the minimisation of a polynomial.

For our sample the best fit was obtained for lognormally distributed ball volumes with parameters
τ = 0.6 and c = 0.223. A comparison of the characteristics of the observed cell system and the average
over five realisations of the model is shown in Table 1. The model is in good agreement with the real
structure. With exception of the mean surface area and the standard deviations of the surface area, the
mean breadth and the number of faces, the geometric characteristics of the model differ by at most 3%.

The deviation of about 33% of the standard deviation of themean cell diameter is caused by comparing
the results from two different estimation techniques: In the image the mean breadth is estimated by
evaluating 13 directions [8, Sec. 5.2] whereas in the model the exact formula for convex polytopes is
applied [9, p. 244]. [5, 10] report similar errors of above 20%. However, the next sections show that this
deviation has no negative influence on the geometric and physical properties of the derivedmicrostructure
model.

The approximately 6% higher standard deviation of the number of faces per cell in the model is caused
by small triangular faces. These are common in Laguerre tessellations generated from ball packings but
absent in real foams owing to the surface energy minimisation during the formation process of the foam.
Another consequence of the energy minimisation is the difference between the moments of the surface
area distribution in the model and the foam. It is caused by the approximation of curved foam cells by
flat polyhedra [11].
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Figure 2: Visualisation of the real foam (a) along with a realisation of the microstructure model (b).
Shown is a volume of 4303 voxels.

3 MODELLING THE STRUT SYSTEM

The microstructure of an open foam is defined by an interconnected network of struts. It is modelled
by morphologically dilating the edge system of the tessellation model by a ball. A typical feature of
the struts in real foams is their locally varying thickness, that is, struts are thicker at the nodes than in
the centre. To include the varying strut thickness in the model, we use the concept of locally adaptive
morphology introduced in [12]. This concept allows location adaptive ball sizes which are computed as
follows.

We denote the mean thickness of struts with length ℓ at distance ξ ∈ [−ℓ/2, ℓ/2] from their centre
by p(ξ ∣ ℓ). As a measure for the strut thickness, we use the radius of the maximal inscribed ball.
By normalising p(ξ ∣ ℓ) by the mid-span thickness p(0 ∣ ℓ) and the strut length ℓ, we get a scale free
representation of the strut thickness.

To estimate the local strut thickness from the μCT image of the foam, the skeleton of the foam is
computed as introduced in [13]. By skeleton we understand the smallest (but not necessary unique)
medial subset of the binarised foam image with the same shape as the foam. The resulting spherical
contact profiles for the shortest, medial, and longest 10% of the copper foam’s struts normalised by
p(0 ∣ ℓ) and ℓ are shown in Figure 1. The differences between the three deciles disprove the assumption
made in [14] that the strut thickness scales with length. More details can be found in the discussion of
[3, Chap. 6] or in [13, 15].

The size map for the strut thickness model is obtained by fitting a polynomial to certain length classes
of the normalised spherical contact profile. We found that the best performing polynomial model in [13]
is also the optimal choice for the observed copper foam. It is defined by

p̃(ξ̃) = p0(aξ̃
2 + bξ̃ 4 + cξ̃ 8 + 1) with a,b, c ∈ R , (3)

where ξ̃ = ξ/ℓ denotes the distance from the strut centre ξ normalised by the strut’s length ℓ. The mid-span
thickness p0 in the model is chosen to be a free parameter to adjust the characteristics of the individual
struts.

To fit a polynomial model to the observed profiles, we subdivide the data into ten length decile classes
qi = (xi, xi+1] with i = 0, . . . ,9, where xi denotes the ith decile of the strut length distribution. We set
p0 = 1 and then use weighted least squares to individually determine the coefficients ai, bi, and ci of the
model in

p̂i(ξ̃) = aiξ̃
2 + biξ̃

4 + ciξ̃
8 + 1 (4)

for all normalised values of p(ξ̃ ∣ ℓ)with ℓ ∈ qi. The coefficients of the polynomials p̂i of the copper foam
for the different deciles can be found in [3, Tab. 7.2]. A plot of p̂0 and p̂9 is shown in Figure 1.

The size map for the adaptive dilation of the edge system is defined by the edge length classes given
by qi. To get a smooth transition between two adjacent struts, the maximal value of each p̂i (the thickness
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Model

Property Sample Mean Dev. [%]

VV 0.1203 0.1228 +2.09
SV [mm−1 ] 6.7485 × 105 6.5323 × 105 −3.20
MV [mm−2 ] 8.3066 × 1011 7.4876 × 1011 −9.86
χV [mm−3 ] −1.4954 × 1017 −1.4787 × 1017 −1.12

Table 2: Comparison of the densities of the intrinsic volumes of the copper foam and the average over
five realisations of its microstructure model. The coefficient of variation between the realisations
of the model is for all properties smaller than 1/150.

in the nodes) was fixed to the median node radius rN = 0.55mm. This is achieved by setting the mid-span
thickness to p0 = rN/p̂i(0.5) for all i. Visualisations of the real foam and one realisation of its model are
shown in Figure 2.

Recall the stochastic nature of the microstructure model. From a deterministic point of view, it may
differ significantly from the real foam as indicated in Figure 2. Hence, both must be compared in a
stochastic sense, that is, the model has to resemble the distribution of certain geometric characteristics of
the real foam. Therefore, we validated the model by comparing estimates of its intrinsic volume densities
[16] (averaged over five realisations) with the values obtained from the real foam (see Table 2 for details).

Both structures barely differ in their densities of the volume VV (volume fraction), the surface area
SV (specific surface area), and the Euler number χV. The deviation of about 10% for the density of the
integral of mean curvature MV indicates that the microstructure model has a smoother surface than the
real foam. Since the roughness of the surface has an impact on the estimation of MV this deviation is
not surprising. Note that these geometric properties were reproduced automatically in the model without
considering them as parameters during the model fit. That means we only provided the polynomials to
describe the strut thickness and the node thickness for the generation of the microstructure model.

4 EVALUATION OF THE MECHANICAL PROPERTIES

To evaluate the mechanical properties of the microstructure model, we compute the macroscopic elas-
tic properties of its realisations and compare the results with the ones of the real foam. For this purpose
we solve the equation of static linear elasticity

∇ ⋅C0ε = −∇ ⋅ (C −C0)ε (5)

in the weak sense for a given stiffness distribution tensor of fourth-order C(x) on the torus R3/Z3. The
strain field is denoted by ε = ε0 + 0.5(∇u + (∇u)T), where u ∈ H1(R3/Z3)3 is the displacement field,
C0 is a constant isotropic reference stiffness, and ε0 is the second-order tensor of the macroscopic strain
applied to the microstructure geometry. In our study we used an isotropic stiffness distribution with
Young’s moduli E = 100 for the copper foam and E = 1 for the matrix material (air). For both materials,
ν, Poisson’s ratio, is set to 0.2.

With this setup, we may compute the macroscopic stiffness C∗ by

C∗ε0 = ∫
R3/Z3

Cε dx . (6)

If we reformulate Equation (5) into a fixed-point equation with respect to the strain, we get the Lippmann–
Schwinger equation [17, 18]

ε = E − Γ0 ∗ (C −C0)ε , (7)

where ∗ denotes the convolution operator. Γ0 is the solution operator derived from the fundamental
operator of Equation (5).
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Model

Modulus Sample Mean Dev. [%]

E1 [ GPa ] 7.29 7.15 −1.96
E2 [ GPa ] 7.21 7.64 +6.01
E3 [ GPa ] 7.23 7.25 +0.23
G12 [ GPa ] 3.03 3.08 +1.47
G13 [ GPa ] 3.03 3.00 −1.03
G23 [ GPa ] 3.02 3.10 +2.65
ν12 0.20 0.19 −3.64
ν13 0.20 0.20 +0.26
ν23 0.19 0.20 +5.17

Table 3: Effective moduli of the copper foam in comparison to its microstructure model. The results
for the model are averaged over five realisations.

To solve Equation (7) we apply the basic scheme of [19] directly to the digitised microstructure model
with a size of 6563 voxels. The scheme is based on a collocation with trigonometric polynomials and an
efficient evaluation of the convolution with Γ0 in Fourier space by means of the Fast Fourier transform.
The computation is further accelerated by means of the conjugate gradient method proposed in [20]. The
computations for this publication were done with the software package FeelMath [21].

Table 3 summarises some of the macroscopic material moduli of the copper foam in comparison with
the ones that were averaged over five realisations of themodel. Shown are the properties for an orthotropic
macroscopic behaviour, that is, Young’s moduli Ei, the shear moduli Gij, and Poisson’s ratios νij. Despite
its structural anisotropy, the foam sample exhibits an isotropic elastic response. The moduli of the model
differ by at most 6% whereas the coefficient of variation among the realisations of the model is smaller
than 1/500.

5 CONCLUSIONS

In this paper we presented a microstructure model of an open cell copper foam. The model is based
on the adaptively dilated edge system of a Laguerre tessellation generated from a ball packing. The
intrinsic volumes (with exception of the density of the mean curvature) of the microstructure model that
we obtain by this procedure differ by at most 3.2% from the values of the real foam—without separately
considering them as parameters for the model fit. Also the mechanical response of the microstructure
model is in good agreement with the real foam.
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